AD~A111 872 OHIO STATE UNIV _COLUMBUS DEPT OF GEODETIC SCIENCE A==EYC F/6 8/5
6LOBAL GEOPOTENTIAL MODELLING FROM SATELLITE=TO=SATELLITE TRACK=-=ETC(U}
OCT 81 O L COLOMBO F19628=79~C-0027
UNCLASSIFIED 7 AFGL~-TR-81-0319




le2 -
. =
l= o

LS i e

L]
[\ S1CHaRT !




S g w

AN
LN

i —

ADA111872

N P
rdelo

T e
P A

b n
el

DT FILE. CopY

AFGL-TR-81-0319

GLOBAL GEOPOTENTIAL MODELLING FROM SATELLITE-TO-SATELLITE TRACKING

Oscar L. Colombo

Department of Geodetic Science &
Surveying

The Ohio State University

1958 Neil Avenue

Columbus, Ohio 43210

October, 1981
Scientific Report No. 10 °

Approved for public release; distribution unlimited

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

HANSCOM AFB, MASSACHUSETTS 01731

g8 03 €9 (1P §

.
!
,
|
i
!
|
|
!
!




O e S ——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE BEF%%%DC%EEEg%’;gNSORM
. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR-81-0319 D1\ &=
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
GLOBAL GEOPOTENTIAL MODELLING FROM SATELLITE-TO- . .ol
SATELLITE TRACKING Scientific Report No.10

6. PERFORMING OG. REPORY NUMBER

Dept.of Geod. Sci.No.317

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(Y)
Oscar L. Colombo

F19625-79-C-0027
9. PERFORMING ORGANIZATIO‘N NAME.AND ADDRESS . 10. ::giRA"‘OERLKESS:‘TT'NZ%OBJEES;' TASK
Department of Geodetic Sciesnce & Survaying 61102F
The Ohio State University - 1958 Neil Avenue 309G 1AW
Columbus, Ohio 43210
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Geophysics Laboratory October 1981
Hanscom AFB, Massachusetts 01730 3. NUMBER OF PAGES
Contract Monitor: George Hadgigeorge /LWG 137
4. MONITORING AGENCY NAME & ADDRESS(f differsnt from Controlling Oflice) 15. SECURITY CL ASS. (of this report)
Unclassified
1Ss. DECLASSIFICATION/DOWNGRADING
SCHEDULE
T S —

16. OiISTRIBUTION STATEMENT (of this Report)

A - Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different lrom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side i necessary and identify by block numbder)

/

I’k
20. APSTRACT (Continue on reverae side {{ neceesary and ldentily by block number)

{/ The error analysis of the global modelling of the geopotential has been
carried out up to degree and order 331 of the spherical harmonic expansion,
for data from a low-low satellite-to-satellite tracking (SST) mission. The
sphericity and the rotation of the Earth have been considered, as well as the
discrete nature of the data, assumed to consist of time averages of the measured
range-rate sampled at regular intervals. The expansion of the potential has been

geodesy, gravity, satellite-to-satellite tracking

Tikely to be present in the data. Two theories have been used: that of least —

DD , %0 1473  eoimon oF 1 nov es s ossoLeTE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

truncated at degree n = 331, because little information on higher degrees is |




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Dats Entered) L
,fjiquares adjustment, and that of least squares collocation; above degree n = 200
,~  [the accuracies predicted according to collocation are significantly better than
those according to least squares. In this report there is also a discussion
on how to process SST data to obtain very high resolution models of the grav-
jtational field. Descriptions and listings of computer programs are included.

To reduce the computer time and storage needed to set up and to invert the .
normal matrix, a somewhat simplified orbital geometry and an approximate model
3 of the data have been adopted; no orbit determination errors have been considere?.

Some arguments are given to justify these shortcuts, which may not affect ser-
jously the validity of the results. An extention of the theory to non-polar
orbits is given.

The main resiﬁ;s according to collocation can be summed up as follows: if
the two satellites move in much the same polar, circular orbit at a height of
160 km and at a distance of 300 km from each other; 1if the accuracy of the aver-
aged range rate is vZ x 10-®m s-! , the averaging interval is 4 5 , and sampling
takes nlace every 4 s ; if residual data are used, with respect to a reference
model of specified accuracy, complete to degree and order 20, then:

(1) the relative error in the estimated potential coefficients could be
better than 1% up to degree n = 130 , than 10% up to n = 210 , and than 50%
up to n = 270 ;

(2) the accuracy of point geoid undulation implied by the coefficients ]
could be better than 0.05 mm rms in the band from 3000 km to 40030 km (total
error in this band), and better than 10 c¢m rms in the band from 140 km to 3000 km
(also total error).

—————————— ..
SECURITY CLASSIFICATION OF Tu'"  &GE(When Date £r

LA . - T i R R i N
et A ottt o




Monitor.

This report was prepared by Dr. Oscar L. Colombo.

. described in this report was carried out while Dr. Colombo was a Post

Doctoral Research at The Ohio State University where the studies were

supported under Air Force Contract No. F19628-79-C-0027, The Ohio State

University Research Foundation Project 711664,

this research is administered by the Air Force Geophysics Laboratory,

Hanscom Air Force Base, Massachusetts, with Mr. George Hadgigeorge, Contract
The actual writing of this report was carried out by Dr. Colombo .
at the Geodetic Institute of the University of Stuttgart in the Federal
Republic of Germany.

Foreword

The contract covering

Much of the research

Accession For._»_”

NTIS GRA&I

DTIC TtB »)

Unanacunnad c

Justifteatton e

Ry e e e e < e

Digtribut(ﬂn/ ]
Availahilttv Codes

T AL L wegar

jid

Dict
i .
|
i

0 LT S b s a4 e e




Acknowledgements

I wish to thank Professor Rapp, Project Supervisor, for providing
. the encouragement and the support that allowed me to begin and to carry
out this research. Thanks also to Reiner Rummel, who is partly respon- 3
sible for my interest in this problem, and who provided useful comments :
on parts of the manuscript; to Carl Wagner, for some interesting corres-
pondence on SST; and to Susan Carroll, who did the typing. i

This report was written during the first months of a visit to the
Geodetic Institute of the University of Stuttgart, in the Federal Republic 4
of Germany. This visit was sponsored by the Alexander von Humboldt Founda- i
tion. To the staff of this institution, and to Professor Erik Grafarend, :
whose liberality allowed me to finish this work, my most sincere appreciation.




.

R
P . U

—_——— .
e

1.

Table of Contents

Introduction . . . . . . . . e e e e e e e e e e e e e e e e e e

1.1 The Low-Low Configuration . . . . . . . . . .. ... . ...
1.2 The Band Limited Assumption . . . . . . . . . . . . .. ...
1.3 An Approximate Model for the Line of Sight Velocity . . . . .

The Mathematical Model . . . . . . . « . « v « v v v v v v v v v

Simplifying Assumptions . . . . . . . . . . . . . . . ...
The Extended Legendre Function. . . . . . . . . . . .. ...
Time Series Expression of the Inertial Line of Sight

Acceleration. . . . . . . . . . . . 0 i e e e e e e e e e e
The Correction Term . . . . . . ¢ . ¢« v o v v v v v v v o .
The Observation Equation. . . . . . . . . . « . . « . . . ..
The Condition that Ny, and Np Must Be Relative Primes. . .
(a) Casewhere M#QqQ . . ¢ . v ¢ v v v v v v v v e e
(b) Casewhere M =Q . . « v & v v v e v v v v v e e
.7 The Scalar Product of Two Columns of the A Matrix . . . . .
.8 Least Squares Adjustment. . . . . . . . . . . . 4 ...
.9 The Structure of the Normal Matrix. . . . . . . . . . . . . .
.10 The Existence of G=%. . . . . ¢ . & ¢ ¢ . i i it e 0.
Least Squares Collocation. . . . . . . . . . + . « o« . o
.12 Accuracy of the Computed Geoidal Heights . . . . . . . . ..
.13 The Effect of Some Mission Parameters on Coefficient

ACCUPACY « ¢ v v v v v v v o o o o o e o v v e e e e e e
.14 The Right Hand Sides of the Normals. . . . . . . . . . . ..
.15 Oblique Orbits . . . . . . ¢ o v ¢ v v v d o e e e

[pC SRS ] N NN
. e e « . e
[« W3 I W N =

N NN NN N
—
—

Numerical ResUTtS. . & & & v v v v v b e e v e v e e e e e e e e

3.1 Spectral Model and Error Formulas . . . . . . . . . « . . . .
3.2 Results According to Least Squares Adjustment . . . . . . ..
3.3 Results According to Least Squares Collocation. . . . . . . .
3.4 Accuracies of Different Harmonics of the Same Degree. . . . .

Validity of the Results. . . . . . . . . . ¢ ¢ v v v v o v v o o

4.1 The Geometry of the Real Orbit. . . . . . . . . . . .. ...
4.2 Vertical Reduction to the Mean Sphere . . . . . . . . . . ..
4.3 The Effect of Errors in the Calculated Orbits . . . . . . . .

Data Processing. . . . . . . ¢ 0 i 0 o L i e e e e e e e e e e e

5.1 An Iterative Approach . . . . . . . . ¢« ¢« ¢ v ¢ v v v 0w .
5.2 Other Methods . . . . & & « ¢ v v v v v v v e e e e e e
5.3 The Use of Local Solutions. . . . . . . . . . . ¢« ¢ v ..

CONCIUSTONS. & & v v v vt e e e e e e e e e e e e e e e e e e e

vii




References . . . . . . . . e e e e e e e e e e e e e e e e e 81
Appendix A : Orbital Perturbations . . . . . . . . . . . ... ... 84
Appendix B: Computer Programs . . . . « « ¢ « ¢ v 4 e e e 0 o e a 88
B.l Main Program. . . . . . . . . 4 v i e v e e e e e e e 88

(@) Full Version . . . & & v v v v v v v v e e e e e e e e 88

(b) Reduced Version. . . . . . . & v v v v v e e e e e e 92

B.2 Subroutine ONEREV . . . . & . & v v & « v v v v v e e e e u 92

B.3 Subroutines LEGFON, MODEL, and NVAR . . . . . . . . . . . .. 93

B.4 Sample OUPUL . . . « = & v v v v e e e e e e e e e e e 94
Appendix C: Detailed Listings Degree by Degree. . . . . . . . . . .. 123

viii

dnh

it bk saiia s et i i




1. Introduction

More than a decade ago, in 1968, Myller and Sjogren published their
paper on lunar mass concentrations, or "mascons". In it they announced
one of the most important conclusions about the internal structure of a
member of the Solar System ever reached from the analysis of gravitation
alone. With remarkable insight, they used the numerically differentiated
range-rate tracking data of the lunar orbiters, deployed as part of the
Apollo program, as "direct observations" of the acceleration of gravity
along the line of sight between the tracking station on Earth and the
spacecrafts circling the Moon. A simple plot of this information showed
strong and roughly circular anomalies over the flatlands, or maria, sug-
gesting the presence of large bodies of abnormal density buried in the
lunar crust.

PO I

The idea that high resolution informat:iun on a gravitational field
could be extracted by a simple analysis from differentiated range-rate
data was seen, naturally enough, as having potential value for the study
of our own planet. One more or Jess obvious adaptation of the idea was i
having two satellites: one in a very high orbit tracking the second one [
on a low orbit, much as the "high" stztion on Earth had tracked the “"low"
orbiters near the Moon. A different satellite-satellite tracking (SST)
configuration, later to be known as the "low-low" approach (the first being
the "high-low", of course), was proposed by Wolff in 1969: he thought
that the relative velocity along the line of sight between two bodies fol-
lowing as close as possible the same near circular, polar orbit was,as
a first approximation, the difference in anomalous potential between the
two. As the Earth rotates, this pair would have eventually covered the
whole planet with observations of gravity, all taken with the same
“instrument", creating a global data set of extraordinary density and of
uniform quality. From such data one should have been able to recover an
almost as detailed, and far more complete, picture of the field than from
terrestrial data alone. Though this idea suffered from some theoretical
and practical problems, its appeal to the imagination was such that it
inspired much research in spite of its shortcomings.

Among the first to help clarify the theory behind SST was Schwarz
(1970), who proposed a rigorous mathematical formulation. Many studies
followed to find out the best satellite arrangement, how the data could
be processed, and what accuracy could be expected from the results. To
all this one must add the work done on the development of suitable hard-
ware, also along several lines.

In the mid-1970's, during the Apollo-Soyusz and the Geos~3 missions,
"high-Tov." range-rate tracking data were gathered using the ATS-6 satellite,
in geostationary orbit, as the high spacecraft, because of its steerable
radar antenna. During the same period, the idea of a dedicated gravitational
satellite mission begun to develop. Both NASA and its European counterpart
ESA drew up preliminary plans for a Gravity Satellite (GRAVSAT), and for
a Space Laser Low Orbit Mission (SLALOM), respectively. Of the two, SLALOM
is the most concretely defined at present (CSTG Bulletin No.2, 1980). It
involves the simultaneous tracking by laser interferometry from the Space
Laboratory,carried on the Space Shuttle, of two reflecting spheres to
determine their relative velocities with respect to the shuttle and to
each other. Recovery of gravity information is to be limited to a region
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over the Eastern Mediterranean, and to a period of some seven days. This
experiment is expected to be carried out during this decade. GRAVSAT,

on the other hand, is a global concept that may take one of several possible
configurations based on the SST principle or, alternatively, resort to

an orbiting gradiometer. At present it appears likely that the SST idea
will be tried first, in a GRAVSAT-A mission in the late 1980's, while the
gradiometer, whose development into a practical instrument for this purpose
is still at the "breadboard" stage, may be used in a GRAVSAT-B mission
sometime in the 1990's. Several types of gradiometers have been considered.
A promising design seems to be a supercooled instrument now under development
at the University of Maryland, which may achieve a sensitivity of better
than 0.001 E (Paik, 1981).

Of the various implementations of the "low-low" principle, the most
Tikely to be adopted appears to be the DISCOS system of two drag-compensated
satellites, capable of remaining in orbit for up to six months so close
to the Earth that, without the periodical use of small rocket engines,
their orbits would decay very quickly due to the atmospheric resistance.

Two proof-masses, ane inside each craft, will be kept in permanent free :
fall by the compensating mechanism, so only gravitational forces act upon
them. Their relative line of sight velocity will be measured by an extremely
accurate radar interferometric technique deveioped at the Applied Physics
Laboratory of Johns Hopkins University (Pisacane and Yionoulis, 1980).
Accuracies of better than 107°ms=! are expected, provided that no serious
problems due to ionospheric propagation are encountered.

Apart from the "high-low" and the "low-low" configurations, an intermed-
jate "butterfly” arrangement, where two satellites follow different ellip-
tical orbits, has been considered as well.

The SST data coilected during the middle of the last decade were analysed i
in different ways. Among others, Kahn et al. (1978) tried to recover gravity
anomalies using the "numerical" method of satellite geodesy, with the aid
of the computer programme GEODYN; Hajela (1978) followed, instead, the
original idea of treating the differentiated range-rates as gravity obser-
vations, and used least squares collocation as the processing technique.
Marsh and Marsh (1978) attempted what was, in essence, an experiment 1ike
that of Muller and Sjogren with Earth data, to detect crustal and upper
mantle structures. A1l these studies have been restricted to local areas,
as no complete global set of SST has been obtained yet.

The work that has been done on the error analysis of the recovery
of vailues of mean gravity anomalies, mean and point gecoidal undulations,
etc., can be divided, broadly, along two main lines: the "numerical" method
of satellite geodesy, and the "direct" approach that goes back to Mylter
and Sjogren: using the differentiated range-rate values as observations.
As an example of the first line, one can mention the work of Douglas et
al. (1980), as one of the most recent. Of the second, the author is best
familiar with the work of Hajela (1974), Rummel et al. (1976), Krynski
(1978), Rapp and Hajela (1979), and Rummel (1980). A1) of these have consid-
ered Jocal gravity field model improvements relying on the theory of least , |
squares collocation. The ultimate accuracy of global recovery given a certain
quality of data has been investigated, among others, by Breakwell (1979),
who used a flat-earth approximation, while Jekeli and Rapp (1980) have
employed a spherical, non-rotating Earth approximation.

-2-
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While all the work mentioned above has been in progress, numerous
meetings, involving government agencies and members of the scientific com-
munity that are potential users of GRAVSAT data, have taken place. Of
several reports on these activities, there are two of particular importance
that describe the objectives of a GRAVSAT mission and also define the
required accuracies and other specifications for the results so they
can be used meaningfully for geodetic and geophysi.al purposes. One is
the report of a special panel of the Committee on Geodesy of the US National
Academy of Sciences (1979); the other is by the GRAVSAT Users Working
Group (1980). The main requirements defined so far are:

a) For geological and geophysical applications, gravicy information should
be resolved at the Larth's surface through wavelengths of 100 km and to

an accuracy of 2.5 to 10 mgals;

b) Oceanographers need geoid heights accurate to some 10 cm in the band
from 100 km to 3000 km.

The first specification is relevant to the study of the structure
of the crust and the upper mantle. The second one is associated with the
analysis of the instantaneous and average shape of the sea surface in studies
that use such data as satellite altimetry. The difference between the
sea surface and a horizontal surface can reveal many as yet unknown aspects
of surface currents, tides, and transients of various kinds, particularly
in regions of the oceans that are not sufficiently accessible by ather
means. Also of consequence to oceanography, as well as to many practical
aspects of geodesy, such as satellite positioning technigues, is the obtention
of a model for the gravity field that permits the calculation of very precise
spacecraft orbits, so this is another important objective of GRAVSAT. Among
the latest global studies those by Breakwell, and by Jekeli and Rapp,
already mentioned, suggest that the DISCOS system could achieve both the
quality and quantity of data needed to meet goals (a) and (b).

The present report describes the theory behind a global error analysis
of a Tow-low mission of the DISCOS type, and gives the corresponding results.
The latter are in broad agreement with some of the previous studies, notably
Breakwell's and Jekeli and Rapp's. The approach taken has been the "direct"
one of considering the differentiated range-rate signal as equal to the
component of the gravitational line of sight acceleration, in an inertial
frame, along the line of sight direction. This is only an approximation,
but it simplifies greatly the mathematical treatment, and previous reports
by Hajela (1978) and by Rummel (1980),already mentioned, indicate that
it may be in good agreement with reality at short spatial wavelengths,
both for the "high-Tow" and the "low-low" configurations, respectively.

This model of the line of sight signal has been modified somewhat here

by substracting a term that depends only on radial distance to the geocenter
to eliminate some unrealistic long-wave phenomena related to the large

zero harmonic and to the other even zonals of the geopotential.

This work is concerned primarily with the optimal recovery of a geo-
potential model in the form of a spherical harmonic expansion of the potential
of such a high degree and order (331) that its truncation error
at satellite altlt? ? (160 km) 1is nearly neg]xg!b]e particularly in the
presence of noise. It differs from previous studies of this sort in
that it considers a spherical, rotating Earth, and discrete data consisting
of time-averages of the instaneous range rate. Observation equations are
obtained under the simplifying assumptions that the orbits are perfectly
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circular, the satellites separation is constant, and that the orbits repeat
themselves exactly every 179 days, i.e., the length of the whole mission.
From these equations a normal matrix is formed that is then inverted
taking advantage of its block-diagonal structure. Two adjustment techniques
are considered and implemented: least squares adjustment, and least squares
collocation. An argument based on an infinite series of successive approxi-
mations is used to show how the results obtained under such simplifying
assumptions can be, in fact, close indicators of the maximum amount of
information than can be extracted from a real, three-dimensional distribution
of SST data. While orbital errors are not included in the analysis, it
turns out that the effect of such errors on the estimated parameters is

very small, although this particular result depends strongly on the model
adopted for the line of sight signal.

The last section considers how the principles used in this study can
be applied to the actual processing of SST data in order to obtain a very
high resolution spherical harmonic model of the gravity field. Such models
have important mathematical advantages, and there is no great problem in
using them if this is done with adequate techniques ( see Colombo
(1981), for instance). Global data reduction is a very important problem,
to which not enough attention has been paid so far.

The potential impact of SST and of satellite gradiometry on the future
of geodesy and of geophysics appears great. It js a difficult
and beautiful task, the work of many, through many years, to develop
what begun as a simple and bright idea for studying the Moon into a tool
for increasing our understanding of our own planet and, eventually,
of the rest of the Solar System. If we are successful, this task could
have a deeper and more Tasting effect on pure and applied Earth sciences
than any other ever attempted in geodesy before.

(I)In this "band-limited" situation, the optimal estimates of anv other
field-related quantities (undulations, gravity anomalies, etc.) can be
obtained directly from the optimal estimates of the potential coefficients
(see, for instance, Colombo (1981), paragraph 2.18). The same is true of
the accuracies of those quantities.




CaNael sl g

1.1 The Low-low Configuration ‘

Figure 1.1 shows two drag-compensated satellites S, and S, that have

been placed almost in the same near-circular polar orbit 30 that, in inertial
space, the plane of the common orbit contains the Earth's mean axis of
rotation, which is aligned in the p1cture with the x3 axis. The geocentric
angle separating both satellites is = 2 sin"{«f) radians. where o
is the length of the segment of 1ine of s1ght betwee;ng and S, . The positions
of the spacecrafts in the system of geocentric inertial crordinates x.,
X., X3 are represented by the vectors x, and x, , respectively. The Iine
of sight vector x,. = xi;-x: is oriented, accordwng te the picture, from
South to North in the ascending passes. The sense of the orbit (prograde
or retrograde) is not important. The mean orbital radius is R .

Both sate{%Jtes turn round the Earth with approximately the same angular
velocity w = yBMR™? while the Earth itself turns on its axis with mean
angular velocity 9 . The points directly below each satellite describe
groundtracks that envelope the whole surface of the planet as the mission
progresses. Both satellites have the same instantaneous longitude, but

their groundtracks are not identical: they are always Yrad apart in the
S-N direction and Quw™ yrad in the E-W direction. In what follows, the

word "groundtrack", unless further explanation is given, should refer

to that of the point midways between the satellites, along the line of sight,
P=xy+3 x5, .

The measuring device detects the relative velocity along the line
of sight between two proof -masses, one inside each satellite, which are
kept in permanent free-fall round the Earth by the drag-compensating mechanism.
This mechanism compensates not only for drag, but for all other non-gravi-
tational influences of consequence as well. The relative line of sight
velocity is

Via = %15 812 (1.1)

where
X12 X1 = X2

is the relative inertial velocity, 31 and x, being the absolute ones,
while

€12 =0 ! X;, (1.2)

is the unit vector along the Tine between S1 and 52 , and

e = [lxial] = Y{xy=xp)2 (X 1-x5,) % + (xn-x“)z_ (1.3)

is the euclidean norm of x,, , i.e., the distance between the two spacecrafts.
The observed values of v,;, are averaged over Aa seconds and then transmitted
to earth-side stations every At seconds, where Aa < At . These averages
constitute the SST data to be studied he -e, and the expression for any

one of them is

T1a(t) = [0 4, Vaa(n) o (1.2)
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Figure 1.1:

B e e ]

The Low-Low Configuration

1.2 The Band-limited Assumption

The line of sight velocity v,, reflects small changes in the velocities
of both satellites about their common average v = Rw . These changes
are brought about by the anomalous gravitational field, which is the dif-
ference between the true field and that of a homogeneous geocentric sphere
of the same mass as the Earth and radius smaller than R .

The actual gravitational potential V can be represented in geocentric

spherical coordinates (radial distance r , latitude ¢ , longitude A )
by a spherical harmonic expansion

M T T an . N

Vir, 6, \) = -,.—nzo mZO &) Pop(sine) [E cosmi+ 5 sinmj (1.5.a)

where P m (sing) 1is the fully normalized associated Legendre function of
the firs¥kind, and m , °>nm. are fully normalized spherical harmonic
coefficients. The fo]?owing alternative notation will be used, wherever
possible, in this work:

© n 1
V(r, 0, ) = & ooy L O T (o) (1.50)

a  ga - Chm cosmy o= 0
Cnm Ynm (0.2) pnm (sing) {S:$ sinmi a=1

with

M is the mass of the Earth, G the universal constant of gravitation,
"a" is the mean Earth radius, "n" indicates the degree, and "m" the
order of each term in the expansion.

-6-




) The three terms with n=1 are zero, because here the geocenter coincides
with thegﬁiigin on coordinates; the zero harmonic
equals > . SO €oo= 1 . The anomalous potential is, therefore,

R(r,e,2) = V(re,)) - 92— (1.6)

The disturbing potential T , the modelling of which is the concern of
this report, is the difference between the true potential V and some
reference model potential  of the form

NM n 1 C\L(M) - )
. A) (1.7
nso mZO QZO nm nm s
where NM is a relatively small integer (20 or 30). The objective of
this study is finding out the accuracy with which a model of T of the
same form as U , but truncated at a much higher order N , could be recovered
from low-low SST data.

U (l‘,@,,‘\) = —l"-

As explained later in this section, the time derivative of the line
of sight velocity can be approximated by the component of the inertial
acceleration aimed along the line of sight, minus a term independent from
¢ and A . This acceleration is a linear combination of the three accel-
erations

3, (rie.1) = ai‘-’- = %':’- nzo mzo aio e e (,n) (1.8,a)
a,(ren) = +2L - & nzo mgo aio & e %;‘ o (1.8,b)
ay(ron) = rclos¢ '3—\,/ ) F’%S_J nzo mgo Qio & %—i Vom (1-8:)
where %%3 72; = ??3 pnm (s1n¢){§?:} ma
T Ly, G [ m

Because all these expansions converge outside the Earth's bounding sphere, i
the general terms of all of them should tend to zero with n tending to
infinity, so the size of the harmonics should, in general, decrease as

n increases. This decay must be accentuated by the factors (&)" , where-
fore the field should become smoother with altitude, as the higher frequency
terms vanish faster than the rest with increasing r . At satellite height
n=R-a this smoothing should mean that, above a certain degree N , all
terms in the expansion can be neglected. Consequently, the field can be
regarded as band-limited, with terms restricted to degrees in the band

0< n< N. As the error analysis method presented insection 2 requires
computer time in proportion to N¥ , it is important to find a realistic
value for N that is also as low as possible. The reasoning that follows
attempts to provide a guide for such a choice using the decay in the
spectrum of the line of sight inertial acceleration as a criterion.

“ T ame b

To simplify matters, Earth rotation can be ignored, the orbit can be assumed
to be perfectly circular, and the geocentric separation y to be constant.
Under these conditions, all field dependent functions are periodical, the
Tine of sight acceleration among them, and can be represented by Fourier
series such as -

e e
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a;o(t) = § 3, coskut + b sink wt
k=0

As the Earth does not rotate in this case, one can choose an arbitrary

system of geocentric coordinates r'=r , 3', X' where the "equator" coin-
cides with the plane of the orbit, and then make the substitution

A = [wtlyopuLe 2n
so that the Fourier series becomes

a12(}) = ] a, coski+ b, sinki
k=0

To find out the coefficients of this series, consider first the inertial
line of sight acceleration in this system of coordinates. For the first
satellite, let

ar (Rs ¢|
a; = {ao (R, ¢
ax (R, ¢'

0, M')\T T
0, A') Jeiz = a1 €12
0, x')

be the projection of its inertial acceleration along that line, and let

_ Al
a; = a; &),

be the corresponding projection for the second satellite. Then the line
of sight acceleration is

a1, = &y, - &,
= el (s0) efS) w o (s) of%H) + ) (50) AF)
- le(ar(sz) LSS:) + a¢. (Sz2) QSSZ) + ax.(Sz) 1§52)) (1.9)
where r(P), Q(P), and A(P) are the unit vectors pointing upwards,"S-N",

and "W-E" at the general point P(r,¢',)'). Because the circular orbit rca
lies on the equatorial plane of the rotated system of coordinates, we have

el o) = 31231552) =0 (1.10,a)
From Figure 1.2 it is easy to see that

eIz_r_sS‘) = -eurosz) = -sin % (1.10,b)
and

ngssl) = 9121852) = cos -%— (1.10,c)

Calling the longitudes of S; and S, X' and \' + v , respectively,

Yy




Figure 1.2:
Geometry of the Satellite
Pair

replacing (1.8, a-c) and (1.10, a-c) in (1.9), rearranging terms (which
is valid, because all the expansions converge uniformly outside the bounding
sphere), and making use of simple trigonometric identities,

a12(R,4'=0,\') = -G-'-';- SO v .ﬁnm(o)(a;-)" [(n+1)Cnmsin L"-2-+ mSnmcos %—] cosn X\
mn=0 n=Mm

+ [("ﬂ)gnm sin-‘g— - '"Cnm cos-'g-] sinm\' - [-(n+1)Cnmsin l"1’2—+m§m“ cos %—]

o cosm (AT+y)

- [-(n+1) Snmsin%- - anmcos-uz’-] sinm (2'+p) (1.11)

Therefore, the coefficients of the Fourier series for a,;, are

3y = %’; nzm Pn(0)(3)" {C, [(n+1) sing-(lﬂosmw) +

+m cos-%— sinmy] + Snm[m cos-%’- (1-cosmy) + (n+1) sin %— sinm u‘;]} (1.12,a)

and © .
by = %rzinzm an(o)(g)“ {C [~ (n*1) sin 3 - m cos -g— (1-cosmy)] +
+ Snm[(n+1) sin-g- (1+cosmy) + m cos-'g- sinmy]} (1.12,b)
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where "m" has replaced the original subscript "k" for obvious reasons.

[ a;,(t) dt has a term of the form ap,t so it cannot
because the latter is periodical under the current
This problem can be solved by removing the constant term
from the Fourier series of a;; , so the time derivative of
be (approximately)

The time integral
be identical to
assumptions.

a1, = a3, - Qg

(1.13)

t
(R,0,0") dx = [ ¥ a3, (wt') dt*

1f (1.13) can be accepted as a valid approximation, then

(where Tg =

(1.14)

where P_ = 1(a2+b2) is the power at the mth frequency. Consider now

the averaging oger?tor M {1}, which will be encountered again in Section 2
in connection with the use of least squares collocation as an alternative
to the usua) least squares adjustment for obtaining a field model.
operator represents an average over all rotations;
as averaging over all possible circular orbits round a non-rotating Earth.

As shown, for instance, in (Colombo, 1981, Section 2),

here it can be seen

M {Cnm skq } = for all integer n , m, k , and g

for n#k,
n
N C;m +3

is usually called the "nth degree variance" of the potential coefficients.
The average orbital power per wavelength is, then,
= = 2 2
Pm M {Pm} M {am + bm}

for 512 , and

Squaring (
accordipg to

and modifying

. the resulting expansion
.17,b) finally becomes

1.15,a-c),

15,3)
15,b)
.15,¢c)

.17,a)

.17,b)




o G g P - =

[

Sy = Py (1¥cosmy) + Ptm(l-cosnw) + 2Py Sinmy (1.18)

rm
where w = 2n
Pem = 1gr-1n E ?ﬁﬁT' (n+1)2 (1-cosy) P2 (0) (1.19,a)
is the contribution from the radial acceleration,
2 M2 ® 2
= 7&%}7;- N 3%%3(%02n m?(1+cosy) P2 (0) (1.19,b)
n=m

the corresponding contribution from the along-track accecleration, and
P =BT ?gﬁT (212" m(n+1) siny BZ_(0) (1.19,¢)
rem - REImE L 2n+] R nm e

is the average crosspectral power of the two.

is w= 1.196 x 10~*rad. s-!. If the separation between the satellites

is o= km, so ¢ = 0.04594 rad. , and if the o, are those used in

the error analysis of Section 3, empirically derived from terrestrial

and satellite data, then the S, are as listed in the table below: i

At & /g§f1ght R-a = 160 km, the angular frequency of the satellites
3

Table 1.1 j
Spectral R.M.S. (S )i of the Line of Sight Velocity, I
and (ﬁ )} (acceleration)
spatial frequency m (S".)5 (f’m)i
(cycles per rev.) (cm s™=) (mgal)
0 0. -=-
1 .335 .410
2 48.854 119.813
3 .348 1.279
4 .205 1.005
5 .170 1.044
10 .678 x 1071 .833
20 .268 “ .656
30 .192 " .706
40 .130 " .637
50 .932 x 1072 .572
100 .855 x 10~ 105
200 .394 x 10-° L967 x 10_;
300 J107 x 1073 .394 x 10- i
400 .207 x 1077 .101 x 107% i
700 .817 x 107 3 .701 x 107
1000 .544 x 10- 3% .660 x 10712
Total rms of signal above
m= 0 48.86 c¢m s°! 120.32 mga
20 n.06 cm s-l g.i% mga]
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To obtain the values listed above, the series in (1.19,a-c) were truncated
at n=1100, though much the same results were obtained with n=500 (up to ™=300),
which suggests a strongly band-limited nature for &,, and v,,. The drepon-

<

derance of the term with m=2 1is due to the large second zonal 31¢ is
related to the Earth oblatness. The signal in the data consists of time
averages of vi: , so its spectrum should be smoother than the entries

in the table suggest. For the purpose of this discussion, such a refine-
ment is not necessary, and the effect of time-averaging will not

be considered until Section 2.

With At=4 seconds, some ﬁ%;-=1427 samples of v;» are taken during
each revolution of the satellites. Accordingly, the “Nyquist frequency"
of the data is Ny=713 . It is clear from the table that the power above
this frequency is negligible, so that aliasing problems related to the
sampling rate are likely to be insignificant. The question of choosing ]
N , the highest degree in a band-limited model of the potential, so that
this model can be regarded as realistic, is not an easy one, except for
the fact that N does not have to be larger than 713. For this study
the value of N=331 has been chosen purely on the basis that this number
appeared to be, on preliminary estimates, the largest N compatible with :
the computing resources available to the author. The results in Section 3
show recovery errors of more than 80% of the actual values for the coeffic-
jients of harmonic n=330 and, for a number of reasons discussed in Section 4,
theseestimates are rather optimistic at the upper end of the spectrum.
So, perhaps, N=331 is truly close to the upper limit of resoiution for
global estimation procedures of the kind considered here (least squares
and collocation).

1.3 An Approximate Model for the Line of Sight Velocity

To estimate the accuracy with which the spherical harmonic coefficients
of the geopotential can be recovered from SST data, one needs a mode] that
relates the information in thesedata to those coefficients. A rigorous
approach involves the solution of many variational differential equations
for the two satellites.which could be done, in an average sense, by the
"analytical" method so well described in Kaula's "Satellite Geodesy" (1966),
and in an instantaneous sense, by the "numerical” approach, an example )
of which is the theory behind the famous "GEODYN" computer programme (Martin
et al., 1970). Regrettably, except for some major break-through in computer
science, the exact application of either technique to the globai study
of SST data from low-orbiting satellites does not seem feasible. The prgb1em
is the sheer size of the spherical harmonic model needed to represent this
data realistically, with N> 300, as sujgested in the previous paragraph.,
and some 4x10° observations over a six month mission. The largest models
obtained to date (for instance GEM 9, by Lerch et al., 1977) by either
technique from satellite tracking data alone have not exceeded N=30, and have
already involved very lengthy operations. This does not mean that these
methods have no role in the analysis of SST data: the "numerical’, at
any rate, has been used already for the recovery of gravity anomalies from
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Apol10-Soyuzs data (kahn, 1979), and for the error analysis of a GRAVSAT
mission (Douglas et al., 1980), but all this has been done on a local basis,
and the purpose of this report is to look at the problem globally.

If a rigorous approach is not practicable, then one must seek some
reasonable approximation that makes the task easier. In this work the
author has followed the example of previous studies (Hajela, 1978; Rummel
1980), assuming that the time-derivative of the line of sight velocity
can be approximated to a sufficient extent by the Tine of sight component
of the inertial acceleration. As explained in the previous paragraph,
the inertial acceleration due to gravitation has an average component along
that 1ine that is not zero, due to the powerful zero harmonic GMr-? and,
to a much lesser extent, to the even zonals (consider (1.12,a) with m=0).
A non-zero mean acceleration would bring the two satellites (in this cage)
together, contradicting the assumption that they can follow (with the right
initial conditions) the same orbit with the same mean angular velocity. )
The effect of the zero harmonic alone, for a height of 160 km and p=300 km, is

ap = 2 sin (%—)%—?—543@1. ‘

and the interpretation of this is plain enough: in the field of a cent(al
point mass two objects initially at rest would fall along the lines joining
their initial positions to the attracting mass and, because their motions 4
converge at this point, they would be moving closer to each other as.we11. ]
Clearly, this is not the case when the two bodies turn in the same circular
orbit, where the relative velocity and its derivative are always zero.

The approximation, it can be argued, can be much better for higher

frequency effects, i.e., the departures of both velocity and acceleration

from their values for a central mass field caused by the mass anomalies.

The question is too complex to be settled by a simple argument,

so the conclusions arrived at by previous authors and by this ong too,

for that matter, are of necessity no more than educated guesses of a pro-
visional nature. In the discussion that follows, I start by deriving rigorously
the relationship between velocity and acceleration, and then introduce

"order of magnitude” estimates for some of the factors involved.

To get directly to the results of interest, one should consider the
residual line of sight velocity

Sviz = vi2 - \;‘1:)2 (1.20)
where EL is the velocity (éf)- ég;T é&l computed by integrating the
equations of motion numerically with the reference potential model U :
this can be called the reference velocity. The residual velocity is what
is 1ikely to constitute the data in a real 1ife situation, and has been
taken for such in the error analysis of Section 3. Removing the reference
velocity (at least in the ideal case where the model truly represents the
field up to degree and order NM) has the advantage of taking away the very
large effect of the second zonal whose presence is undesirablie from a numerical
point of view. As the computed orbit is likely to reflect very closely
the effect of the attraction of the Sun, the Moon, and of the major planets,
as well as the indirect effect of the tidal deformation of the Earth, the
residualdata are 1ikely to be freer from these unwanted gravitationa) signals
than the original data, resulting in less interference with the desired
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information. Non-gravitational effects are removed, presumably, by the
drag-compensating mechanism .

The time-derivative of the residual line of sight velocity is
. . . ve . C . . -
Sviz = a'df (_&Izé1z'§£g)Té‘1:)2) "'51;2 €12 'ng)Tgﬁz)*')_(Iz e12- AS)TQE)

(T ()

.7 . . -7 a .
X12 €12 - X 2AX12-X12€12 €22)P -X12" (X12'- X1

12

=[X12 - §£g)]T§12 tp-t [_&Izilz-igg).rﬁ(lcz)*' (ﬁ?”slz)z - (X2 @]
(1.21)

assuming that the computed orbit differs from the true orbit by only a few
meters, as it is believed tgcye the case wﬁéi_using contemporary tracking
data and field models, so €i2=e;» and AC, p . The first term in (1.21)
is the residual inertial line of sight acgeleration, so the sego d term
corresponds to the discrepance between dv;, and Sa,,=ajz- 92 . This
second term can be written

e = o (xe g P - (ST e, 2] (1.22)

where e, is the unit vector pointing outward along the normal to the
1ine of sight. Therefore

8vyy = 6312 + e

sar: + 07t Sz e, (1.23)

N

So far the rigorous analysis. How large can ¢ be? Taking the mean
value of ¢ over all rotations

. R A . ) -]
M{c} = .‘4{6(5_12 Qn) }- ° 1(n§=1 Smn‘ ) mZI SI:(C)) (1.24)

where Spr __land S{,‘]( c) .a,rs the average power at m cycles per revo-
Tution in X}, en and x\§ T en r#spective1y. Ih?%e are, propably,
o
2

of the same ordér of magnitude’as %;, e;, and X e12 . As the model is
restricted to so cjal frequencies of NM cycles per revolution or less,

it should be (=0 if m>NM . Replacing S with the Sy in (1.24),
for m>NM the summation should add up to

MO iy s (1.25)
& m=£M+1 m '
. m> NM . . . .
where "€ symbolizes the contribution to ¢ from frequencies above

NM . Comparing the mean value for the mth component of e to the root
mean square value for the corresoonding component of &a;, , or m* ,
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=a"1 5m . -1 ¥ P

if P=300km and w=1.2 x 10°* . In spite of the presence of P% , this
result is, in fact, dimensionless. From Table 1.1 follows that for NM=20,
for instance, the right hand side of the expressicn above is 5. x 107°,
Rumme] (1981) has found, by a similar reasoning, that the ratio of

M s5xi,} to the total rms of &a,, (with NM=20) may be l2ss than 1.5 x 107,
which may be in agreement with expression {1.26): the relative error de-
creases with frequency because of the m-2 factor anc of the fas* decay

of #4 with m, so the total ratio should be less than the partia’ ratio
at m=20 . C(learly, there are several assumptions involved in these results
which have no obvious justification, except that they are not too unreasonable.
As the gquestion of "reasonable" or "unreasonable" is a tricky one, this
author would conclude that, at this point, the omens look favorable for

the model of the line of sight signal proposed here, but detailed studies
should be done to verify this question further. It is not just a matter

of deciding how to conduct an error analysis of a SST mission, but also
whether it may be possible to find an algorithm for reducing the data from
such a mission which, along the lines explained in section 5, could be
capable of resolving potential coefficients to a much higher degree and
order than it is possible at present with existing techniques. One way

of conducting a more conclusive study of this matter may be to compute
simulated orbits using a field with a broad spectrum, such as that of the
point mass model used by Wagner and Colombo (1979), making this model rotate
1ike the Earth, and to compute also the orbits corresponding to a "model
potential” consisting of the first NM harmonics of the point mass field.
From both sets of orbits one can obtain all the information needed to calcu-
late the two terms in (1.23) and to compare them with each other in various
ways, thus throwing a much brighter light on this whole subject. The field
of the point mass model referred to above has, roughly, the same power
spectrum as that of the Earth, but it is very easy to compute because it con-
sists only of 200 mascons.

Not only the issue of the accuracy of the model proposed here for
the line of sight signal can be clarified by numerical studies, but perhaps
better models may emerge that share with the present one all the practical
advantages and that are also truer to the real situation.

The model chosen for v,, in this work is not a,, but, as explained
in the previous paragraph, 4,, = a,, - a, , where a, is a term independent
of & and )\ , about which more will be said in section 2, and
equal to the contribution to a;, of the zero harmonic and of the zero
frequency terms in the Fourier expansions of the even zonals. It could
be argued that the difference between this and the model used by previous
workers (who 1ike Rummel, have chosen v,, = a,,) is trivial, because
a, must be almost entirely removed when the reference velocity is substracted
from the data. This is true only if the orbit along which the reference
velocity is computed coincides with the true orbit. In general, this is
not the case, as orbital errors are present in the reference orbit. Because
of these errors, the "removal" of the zero harmonic and even zonal effects
accomplished by substracting the reference velocity is not as thorough
as if such effects had never been included in the definition of the time-
derivative of v;. , as proposed here. If left in, the very large p.eudo-effect
of the zero harmonic would give the impression that orbital errors
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have an influence on the ~stimated potential coefficients that is

more important than with the present model. Therefore, the choice between
the two models is not at all trivial. This is another aspect that could
be clarified by careful numerical simulations.




2. The Mathematical Model

This section presents the observation and normal equations for the adjust-
ment of spherical harmonic coefficients of the Earth's gravitation potential
frgm ]ow-]ow tracking data. These equations are derived here under some sim-
plifying assumptions. The admissibility of such simplifications is discussed
elsewhere, particularly in sections 1 and 4. 1

2.1 Simplifying Assumptions

Computqtions involving spherical harmonic expansions car be speeded
up greatly if there are regularities in the distribution of the data. While
such regularities may not occur in reality, actual and ideal distributions
may be close enough to each other to ensure that the results obtained for

the ideal situation are also applicable to the real one. The assumptions
in question are:

1) both satellites describe coplanar, circular, polar orbits with
the same geocentric radius R and with the same mean angular velocity w 3

2) the plane of the orbits is fixed in inertial space, and fluctuations
in the geocentric angle ¥ between the two satellites are disregarded;

3) the Earth's angular velocity vector is fixed in inertial space,
jts magnitude is constant and equal to 2, and its direction coincides
with that of the figure axis;

4) the mission lasts an integer number of days Np ; « and &
are commensurable, so the groundtracks of the satellites repeat themselves
(for the first time) after Np days; the total number of revolutions of
the mid-point between satellites, N. , is prime with respect to Np ;

5) there is perfect compensation for jonospheric propagation, for
radar pointing errors, and for ali non-gravitational forces such as drag
and solar pressure; the attractions of the Sun, Moon and major planets
have been accounted for exactly when computing the satellite reference orbits
and velocities (the data consists of residual velocities, i.e., differences
between measured and reference values);

6) data are sampled at constant intervals of At seconds without
interruptions during the whole mission; there is an exact number Np
of sampling intervals in the total time T =Np x 24 x 3600 s , and
Np = —g¢ 1s an even number;

7F° the sampled values consist of the residual line of sight velocities
averaged over Aa seconds, where Aa < At 3

8) all data errors are uncorrelated, have zero mean, and the same
standard deviation;

9) the line of sight inertial acceleration differs from the time deriva-
tive of the line of sight velocity only by a function of r (constant
for a circular orbit); .

10) at satellite altitude, the detectable gravitational signal is confined
to harmonic terms of degr2e no larger than N = 331 ; the highest frequency
in such terms is less than half of the sampling frequency c/s
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11) The only source of uncertainty is the presence of errors in the
measured line of sight velocities.

Assumptions (5). (6), (7), and (8) by and large state what a perfectly
successful mission should produce in terms of data; assumptions (9) and
(10) have been explained already in section 1; assumption (11) is basically
sound if assumption (9) is admissible, because as mentioned in paragraph
(1.3) and further argued in section 4, (9) implies that the coupling between
orbit determination and field modellina is weak, so orbital errors:
provided they do not exceed a few meters, have little effect on the recovered
potential coefficients. Assumptions (1) through (4) define a simplified
geometry, the validity of which is treated in detail in section 4.

2.2 The Extended Legendre Function

The equation

m
_ (-1)Y'(2n! m .n-m _ (n-m)(n-m-1 . N-m<2?
an(¢) 2! {n-m)! cos’e Lsin w 2{2n-1 sin- ¢

(n-m)...{(n-m-3)

iph-mzd ]
2.4(2n-1)(2n-3)

+ si

defines the function L., of o that has the following properties:

: dh L ah p o
(a)  Lyple) = Ppplsing) and oo "MM(e) = 7= "nm(sing) if > <0 <5

(b) an(¢) = an(-¢) if n-m is even (2.2,a)
an(¢) =-an(-¢) if n-m is odd (2.2,b)
an(¢) = an(v-¢) if m is even (2.2,¢)
an(¢) =-an(n-¢) if m is odd (2.2,d)

in the interval 0 < ¢ < 27 .

From (a) and (b) one can infer that
(1) an(¢) is even if n-m 1is even, odd if n-m is odd;
(2) Lpp(s) has a finite Fourier expansion where the highest term is the nth
?arm?nic and only sines or cosines are present, depending on the parity of
n-mj).

n

an(¢ ) = pzo hgm cosp¢ if n-m is even (2.3,a)
T oam o, , ,

an(¢) = pgo hp sinp¢ if n-m is odd; (2.3,b)

(3) Lpp(¢) has half wave symmetry (Lom(¢)=Lpm(m-0)) if m 1is even, and

half wave antisymmetry (Lnm($)=-Lpm(7-¢)) if m s odd. Sums of sines

or of cosines which have such symmetries can contain only even or odd harmonics,
so the Fourier expansion of L,, must have only even terms if n 1is even,

and only odd terms if n s ogd. As a consequence, the Fourier coefficients
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hO"  with P of opposite parity from n are all zero;

(g Lnm(#) is continuous and infinitely differentiable in 0 ¢ o < 2-
ang takes, together with all its derivatives, the same values as P,, and
all its derivatives in the interval -i% $ds

The function L, is the analytical continuation of Pp, in the interval
0 <6 52n , and can %e called for this reason the extended Legendre function of
the first kind, degree n and other m in 0 5 4 s 27 . Multiplying Lam

by the same normalizing factor as Ppy one obtains the fully normalized
extended Legendre function

von+l (@) if m=0
Lopte) = (2.4)

-m otherwise
2(2n I}g:::% nm
n+m) !

Consider now the spherical harmonic of degree n and order m

a (¢ A) = P (s1n¢) t§$§} m A (2.5)
The maximum circle containing both poles and the point (4=0,)\) on the equator
consists of two meridians, of longitudes A and Xi+w , respectively. Along
this circle, points can be ordered according to a parameter ¢' in the
interval 0 < ¢' < 27, which increases continuously from (&'=0,\) towards

the N pole and beyond. The geocentric latitude ¢ , on the other hand,

first increases towards the pole like ¢' , but on crossing the pole begins

to decrease again as it approaches the equator at (»=0,A+n), and it is negative
in the southern hemisphere. The harmonic YRm s a continuous function

of ¢' along the meridional circle, the same as its derivatives, and it

follows from (2.5) and (2.2,c-d) that

Bo(sine) {S95} alasm)

Vﬁm (o, A+7)

sin
m . cos
= (-1)" P, (sing) {snt m A
_ cos
- Enm (n-¢) {sin} m A

T ] cos - v 1
Lam(®") {g5nb m A = Y p(0%3)

This relationship shows that by using [,p and ¢' instead of Py and ¢

one can formulate Y%, avoiding the c:mplications that would arise otherwise
because of the discontinuity in the value of the longitude at the poles.

This is not a real discontinuity in the function Y%, , but merely a conse-

quence of the way in which longitudes are defined.

Replacing Ln¢ ) with its Fourier expansion {2.3,a-b) the harmonic
becomes

n

Yzm (o*,2) =} ﬁ;m cospd' {g?:} mi if n-m is even
=0 (2.7)
n
I R sinpe' {S3°} mA if n-m s odd
=0
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where nm
Fm vZn¥] hp if m=20
/2(2n¥T)}n-m J h;m otherwise
n+m)!

and there are orly even Fourier terms if n 1is even, and odd terms if n
is odd.

2.3 Time Series Exoression of the Inertial Line of Sight Acceleration

Reasoning as in paragraph (1.2), but considering the line of sight
oriented along a meridian (polar orbit) instead of along the equator, one
gets the following expression for the line of sight relative inertial accel-
eration

d12 T 8 - &
= el () ap s0) + o) o (8) - rfP2) 2 52) + 085 o 52)
= -(a (51) + a.(s2)) sing= + (a,(51) - a,(52)) cos5- (2.8)

where terms containing the “"across track" acceleration a, have been dropped
because 1, 1is always normal to the orbital plane and to"the line of sight.
Writing the radial and "along track" components a, and a4 according

to (1.8,a-b), replacing Pn; with [,y , and choosing the mid-point coordin-

ates ¢' =¢] +¢: , X =X *+ ), as independent variables,
N n ‘

r v Y iQ " e
) ZO {(n+1)[C (o'~ + L (o' +-5)] sing-

n=0 m

alz(R:¢'v>\) = %
d

+ o [ - -Lon(e 4 coso Jig) 7 cosmA
+ S sinmi ] (2.9)

where N is the smallest degree such that C -0, n-N , according to the
bard-1imited assumption.

Since

n
Lop (' +8) = p;o R™ (s} P(s' +8)

(cosp(e"+8) if n-m 1is even, sinp(¢+8) if n-m is odd), it follows from
elementary trigonometric refationships that

n ' . Vs
R - nm ,CosS Po €OS PR - sin p¢' sin p3 .
l:nm (¢+8) ! ﬁb sin p¢'cos pR + cos po' sin pR

SO

; Logle' ) Ll = 2] RiPeos 5 (551 oo
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e e e e . .
-

while v v sin
and therefore
d " .U vy ¥ i 2 cam . Yy (COS |(2.10,b)

& Ll 7)) - Lyplets 501 = ZPZO hp” P sin oy {gint po

From expressions (2.9) and (2 10, a b) follows that
. GM T nm cos
R, ', 1) = P2 { ¢
a12(R, ¢ - nZO mZO [p L 2R)" (n+1) cosp 7? (cint P

+ gozﬁnmo sin p. cos-f-{i?;} ps'] (%—)n (€ pcos m + Som SN m;zjll)

is the relationship between the value of the line of sight relative inertial
acceleration for the two satellies and the spherical harmonic coefficients of
the gravitational potential, the {%n . Carrying out various multiplications
indicated in (2.11), and making use of the trigonometric equations

cos(pd'+ mr) + cos{po’'- mA)
sin(pé'+ mA) - sin(pe'- mA)
sin(po'+ mA) + sin{py'- mA)
-cos{pd'+ mA) + cos(ps'- mr)

2cos P& cos mA
2cos P sin md
2sin p¢' cos mi
2sin py' sin mi

i

i

]

leads to tn. expression

GM Noon nm (cos{p¢'+mA)+cos{po'-mr)
az(R, 05 ) = - z mZO [ pi 2 {sin(p¢'+mx)+sin(p¢'-mx)}
n
nm ,sin{pd'+ mA) - sin(pd'- mr)
?9 z a { -cos(p¢'+ m\) + cos(po'- mx)} (2.12)

where - ,

a;m = h;m [(n+1) cospéf sin%r+ p sin p%% cos%?] (2.13)
S0 am

;" = 0 if n and p have different parities (par. 2.2, remark (3)). J

f Introducing time as the independent variable through the formulas

: o' = [wtlog 2n (2.14,a)

and
A =~[Qt]mod o (2.14,b)

and introducing the scaled harmonic coefficients

- S an GM

Com nm ( ) (2.15,a) :
& o ayn GM ‘
Snm nm ('R-) '-E-: (2.15,b) ]
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expression (2.13) becomes

n n

N
- e nm jcos{pw + m2)t + cos{pw- m2)t ,
e lt) nZO m§=:0 "M p=0 2% Lsin(po + M)t + sin(po - m)t!
n . .
P nm ;-sin{pw + M)t + sin{pw - m2)t
* Snm ) 3 {cos(pm + md)t - cos(pw - m)t ! (2.16)

p=0

This last formula shows a . as a time series representable by a finite Fourier
series where the angular frequencies present have all possible values pw = m?, 0<
P .m < N, and the Fourier coefficients are sums of terms of the type Cpm aBm
and Snm al™ , respectively. The time origin chosen should not influence the
outcome of %his analysis. The choice implied by (2.14,a-b) corresponds to

t = 0 when the mid-point between the satellites is directly over the equa-

torial point (0,0).

2.4 The Correction Term

As explained in paragraph (1.2), the model for the time derivative of the
relative line of sight velocity used in this study is not the relative inertial
line of sight acceleration a,; , but this accelerationminusa time-invariant
term ap, (expression {1.13)).or modified acceleration &, . According
to (2.16), this time-invariant part can only be due to terms where
Pw* mQ =0 . As indicated later in paragraph (2.6), one of the assumptions
made in this study imply that pw 2 mQ#0 if 0<mg< N so this leaves
only the case p=0 , m=0 , corresponding to the even zonals, n=0 in partic-
ular. Therefore, the corrected acceleration is

ar2(t) = azz(t) - a

where n GM

a='§a“°é ='§a"°c ()" = (2.17)
’ n=0 tno n=0 BRULENY R? .

is a term that depends only on R , as expected.

2.5 The Qbservation Equation

One of the assumptions made in paragraph (2.1) was that the orbits
are periodic with a period T equal to the length of the whole mission.
Consequently, the various anguiar frequencies (pw * mQ) present in the right
hand side of (2.16) are harmonics of fundamental frequency uo = . The
modified line of sight relative inertial acceleration a,, is regarded
here as the true time derivative of the relative line of sight velocity,
in accordance with expression (1.13). Therefore

via(t) = [T a5, (8) dt + vi,(0) ‘ (2.18)

Because of the assumption of orbital periodicity, replacing the integrand
in (2.18) with the difference between the right hand side of (2.16) and
a, according to (2.17), and integrating this difference term by term, one
gets the following expression, where no zero frequency term is present:
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N n sin{pw +m2)t + sin{pw - mA)t

n ~ -
na(t) = 11 E Lagh)Btml P - m ¥
n=Z m=0 p=z -cos{pw+mt - cos(pw ~m)t
po +m { pw - m¢{
n cos{pw+mOt - cos{pw- m{)t
$301 aM ) R FRT T Too-wn (2.19)
p=z P Ysin(pu+md)t - sin(pw-mJt
pw + mal pw - mi
where 0 if m#0 (2.20)
z =

1 if m =0 andwhere Cy5 , C;; , S11 have been dropped as
unknowns, because the origin of ccordinates
coincides with the geocenter.

The actual observations consist of time averages vi, of the measured
relative line of sight velocity. This averages are taken over identical
intervals of length Aa seconds, spaced At seconds apart. The signal in
the observations is, then, the line of sight velocity averaged over Ja :

t

Viz(t) = *& - Aav“(*c) dt
N o n n S((putmr)t,Aa)+ S((pw-mAt,Aa)
= 1 ¢ 7 oM (¥ made (P - ma)2
Aa n= m=0 nm p=z P -Cl{pw+mD)t,2a) _ C((pw-m)t,aa)
(pw + m@j2 (pw - mQ)2
n C{{po+ mﬂgt,Aaz- C{(pw- Q) t,2a)
¢S 7 am Pw + ml)*” (pw - m2)
"oz P fs({pu+ me)t.0a)- S((pe- m2)t,0a (2.21)
mp_ < s - Yl Y
where o * (P = m2)
Cl(pw + mD)t, Aa) = cos(pw + M)t sin(pw + M) Aa
+ sin(pw = mQ)t (1-cos(pw *+ my) Aa) (2.22,a)
and

S{(pw

+

m)t, Aa)= sin(pw + M)t sin(pw + M) Aa
- cos{pw + M)t (1-cos(pw + m) Aa) (2.22,b)

The observed value at t; consists of v,, plus the measurement noise
average over ti-Adagtgty, or ny:

Ggf") +ny = WiXobs) (2.23)

Rearranging the order of summation with respect to n and m in (2.19)

and replacing the result in (2.23) one arrives to the observation equation as
it will be used in the error analysis

NN n S((pwt m2)ty,0a) + S(fﬂﬁ-mzt!'rﬁa)
1 L Gy ) am | TTeerm P> 0 "

nm

m0 Bix(m,2) P=2 P :ELE.&»"_"Q)_‘)Z_;QE)- w=m)t;, A
Pw + mQ Pw - mQj?2
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Cl{p * m)ti,Ad) - C{{w-m2)ti,Aa
(pw+ mQ)? Pw - MY)?2

S{(pwt m)tj,488) - S{(pu-m)ti,ra)
(Pw + m2)?2 (pw - mQ)2

_(t4)
=V (obs)Lr1
(2.24)

where max(m,2) indicates the largest of m and 2 , and where r; is

the residual or difference between the measurement and the value calculated
by replacing the C%, with numbers in the 1eft hand side. When these
numbers are the true values of the unknown C0p and the model is perfect
(as it is supposed to be in the case here), then

. == N.
Y‘] i

(all this is in keeping with established practice in geodetic }iterature).
Consider the following vector notation

v - rol0) (at) (int) JT-at= (Ng-1)a8).T

Vaz(ohs) = [Vi2{ops) Vi2(obs): * * V12 (obs)* * - V3(obs) ]
(2.25,a)

r o (R N e (2.25,b)

e s x 4T

E{n - [C“m C(m+1)m' CNm] (2.259C)

Sm = Bom Saetym Syt (2.25,d)

c SO S OF SRS S A (2.25,e)

where ilgéobs and r are both Np - vectors and ¢ is a N¢ - vector,
Np being the 2ota1 number of observat1ons (some 3.9 x 10° measurements
over six mo?fgs if at = 4) and Ne = (N+1F- 3, the number of coefficients

in the band 2<nsN. The set of all observat1on equations, or system

of observatjon equations, in matrix notation, is

(2.26)

Ac = ilz(obs) +r

where A 1is the Np x N¢ matrix of the observation equations; The unknowns,
according to (2.23), are the scaled potential coefficients C¥, , instead
of the actual coefficients Cfp » which are the ones desired. Once the

Chm are known, however, the ? can be obtained by a trivial operation
based on (2.15,a-b). The same 15 true of the standard deviations, which
are the quantities relevant to this error analysis.

The observation equation (2.24) presents the relationship between data
and unknowns in time. The correspond1ng relationship in_space can be obtained
directly from (2.24) by replacing ¢' and X for t 1in accordance to
(2.14,a-b). The temporal representation, however, makes the overall treatment
of what is to follow simpler, and is adopted here for this reason.

(I)Coeffic1ents with n > NM are actual field coefficients; with n g NM
(NM being the highest degree in the reference field model mentioned in para-
graph (1.2)) the C@, correspond to residual coefficients: the differences
between the actual coefficients and the coefficients of the model, if the
data consists of residual velocities, as assumed in section 3.
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2.6 The Condition that N, and Np be Relative Primes

If Earth rotation and satellites revolution are congruent over the
length of the mission, the total number of revolutions N, and the total
number of days Np are both positive integers. According to condition
(4) in paragraph 3.1 they are also relative primes, i.e., without common
factors other than the unity. As shown here this property rules out certain
relationships between the frequencies pw * m in (2.24), the absence of
which simplifies the mathematical treatment of the error analysis, as it
will be explained in paragraph 2.7. Taking m in the interval N <m< N,
pw * mQ can be written more simply as pw + m0 . The relationships of
interest have the form

P + M = ju + qQQ (2.27)

where either p #j , m# q , or both. The guestion as to whether such
relationships are possible can be answered in two parts:

(a) Case where m # q:

If (2.27) is possible, then

m-9 _ w .ww' . N
PR cER W (2.28)
2n

where wq, 1is the fundamental angular frequency of the missi*p: wo = =y .
As both N, and Np are positive it follows that 4=8 = gk so

[3-P§
Im-ql Ny = |3 -plN,
As |m-q| Np and |j-p| N, are both positive integers and N, and Np
have no common factors, it must be |m-g|] = Npr K for some K21, so
m-af 2 N. (2.29,a)

As -Ngm< N and -N<qgs N, it follows that, under the band-1imited
assumption,

Im-q| < 2N (2.29,b)
As a consequence of (2.29,a-b)
Nr < 2N (2.29,¢)

if (2.28) is true. In the present case, the number of revolutions over

six months with the satellitesat a height of 160 km exceeds 2900, while the
maximum degree n of the harmonics in the band considered here is, according
to paragraph (1.2), N = 331 . This means that 2N < N, , contradicting
(2.9,c) and thus, (2.28). Therefore, for the given satellite height and
field bandwith, (2.27) is impossible if m# q .

(b) m=gq:

In this case (2.28) is never true, because the first member is always
zero except in the trivial case p = j , where it is indeterminate. Therefore
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(2.27) is also impossible when m = g and , thus, whenever either p # j
or m ¥ q apply.

An immediate consequence of the impossibility of (2.27) under the assump-
tions of paragraph 2.1 is that

pw tmR =0 (2.30)

is also impossible, except in the trivial case p =0, m =0, which has
been excluded by the way in which the modified line of sight acceleration
is defined (see expressions (1.13) and (2.17)). Since the rate of precession
of the node of a polar orbit is nil, condition (2.30) corresponds to what
is known in satellite geodesy as a resonant orbit. So the assumption that
Nr and Np are relative primes excludes resonances. This means that the
orbit is notallowed to repeat itself after a number of revolutions that

is a submultiple of N, , so no sub-cycles occur within the grand cycle
whose period is the length of the whole mission, i.e., T seconds or Np
days. Because of this, the sampling of the gravity field over the face

of the Earth is the most even that s possible, as with resonances many
arcs would be superimposed, so the "footprint" of the mid-point between

the satellites would cover the ground rather coarsely. Without resonances,
the arcs are all different and, thus, better spread out.

In reality, resonance is most unlikely to occur exactly: the actual
situation is much too complicated. How realistic is, even so, the assumption
that N, and Np are relative primes? While perfect congruence (both
numbers integers) is also quite unlikely, the situation need not be too
different from that implied by the assumption. Choosing Np = 179 (a prime
number) and N, = 2933 (another prime), both are then relative primes.

For the sateilites to orbit, at 160 km, 2933 times around the Earth in precisely
179 days, a change in w of only -4 parts per thousand from its actual
value is needed or, equivalently, an increase in @ of 4 p.p. thousand.

2.7 The Scalar Product of Two Columns of the A Matrix

If the Np - vectors apn and aEq are the columns in the matrix
of observagéon equations A of (2.26) corresponding to the scaled coefficients

€5 and € q» respectively, then their scalar product
N
a8 _ a7 B - Pl _a(ty) .8(t5)
Prmkq = (Enm) Yq 7 ¥ 3nm ! qq ! (2.31)

.‘=‘0

i
should depend, according to (2.24), on what the mission parameters Aa , At ,
and ¢ are, and also on the values of sumsof products of ccsines and sines

of the various arguments (pw * m2)tj , where the discrete values t; cover

the whole length of the mission. The products of the columns of A have

to be obtained as part of the formation of the normal matrix of the adjustment,
the inverse of which provides the a posterijori accuracies that are the main
objective of the error analysis. Sums of products of sines and cosines

sampled at regular intervals are strongly influenced by the relationship
between the sampling frequency (inverse of the sampling interval At) and

the highest frequency in the arguments of the trigonometric functions involved.
In particular, it is important to know whether the highest frequency is

below the Nyquist frequency (one half the sampling frequency) or not, in

order to choose the most convenient treatment for those sums of trigonometric
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[N,

products. In the case at hand At = 4 s, so the Nyquist frequency
is

-1
Ny " cycles/s
= 0.125 c¢/s

while the highest frequency, corresponding to the term (Nw + NQ)t is,
for N = 331.

_ 331 _
fmax = ﬂ(m +Q) = 0.066 ¢c/s
Therefore,

Fmax < Ny (2.32)

or the highest frequency is less than the Nyquist frequency. Under this
condition, the following formulas apply:

Np-1 Np-1
_2 cos(pw * mQ)t; cos(jw * qQ)ti = .20 sin(p + mQ)ti sin(jw * qﬂ)ti
i= i=

P if (po20) = (@)

0 otherwise (2.33,a)

p=Jj=m=g=0 being excluded, and Np being even;

Np-1
'20 cos{pw mQ)ti sin{juw * qQ)ti =0 always (2.33,b)
j=

From these formulas, and from expressions (2.22,a-b), one gets

N
p-1
.20 C{(pw * mQ)ti,na) C({Jw * qQ)tj,0a)
i=
Np.1 N_(1-cos(pwim)aa) if pwimQ
= izo S ((pwtm)t;,0a)S((JutqR)ti,08) ={ P - . = jutan
0 otherwise (2.38,2)
p=Jj =m=qg =0 being excluded, and Np being even;
Np-l
iXO C((pw £ m)ty),4a) S ((ju £ q)t{),02) = 0 always (2.34,b)

As a result of expressions (2.34,a-b) above, of the fact that al™ =0 if

p has different parity from n , and of the fact that pw + mQ ? jw * q
if at Jeast p # j , as explained in the previous paragraph, replacing
a%&t1) and aesti) in (2.31) by their respective expressions according
to (2.24), i.e., 27




ti) . 1 B
nrgtj)-—é—a Z

——
-

i where { I is the fzrst or the second bracketin (2.24), depending on & ,
| and similarly for akqt , one gets

odd .

. , even
0 if a#s, m#q, n{ 2"} and k {even’

" min(n,k)

Pamkq A_L 7 a;m a:m [(1- cos{pu+m2) aa) +(1- cos{puw=-ms) Aa)]
T (puo + ma)* (pw - me)*
min(n,k) being the smallest of n and k . (2.35) 5

ads the expression for the scalar product, which shows that under the assump-
f tions the product is zero in the majority of cases. This results in
many elements in the normal matrix being zero as well, which is a major
. advantage when setting up this matrix, as only the relatively few non-
, zero elements have to be computed. Moreover, as shown in paragraph {2.9),
} a suitable ordering of the unknowns groups this non-zero elements in
, a block-diagonal structure, so inverting the very large normal matrix
! reduces itself to inverting the much smaller diagonal blocks, a crucial
! fact as far as the feasibility of obtaining the a posteriori covariance
! matrix is concerned. Finally, expression (2.35) shows that the non-
| zero elements can be computed from the values of the afim , which are
the Fourier coeff1c1ents of the Ly multiplied by sca?e factors (expression
(2.13)). Because the ap are zero when p and n have different
parities, because an are expansions of sines only or of cosines only,
and because n cannot be larger than N = 331, the total number of terms
in the summation of (2.35) is much less than that of the terms in the
summation of (2.31), resulting in considerable economies when computing
the non-zero elements of the normal matrix.

The Fourier c0eff1c1ents can be obtained by comput1ng L (¢ ) at
regular intervals A¢' 53- (the highest frequency in Lpg ?¢‘) is
that of cos n¢' or sin né’ ) and then carrying out a numerical Fourier
ana]ysis, or discrete Fourier transform, of these values. This is done
in the program of appendix 8 by means of a mixed-radix Fast Fourier Transform
algorithm chosen on grounds of efficiency. Finding the required value of [pn
in the interval 0 < ¢' < 2n 1is simplified by the use of expressions (2.2,a-c)
and of the relationship [np(e') = Ppm(e') if 0s o' < , which reduces
most of the effort to that of computing the values of an at regular
intervals in 0 < ¢' < —%

2.8 Least Squares Adjustment

Consider the quadratic form

Q=r Pr (2.36)
where P is a symmetric Np X Np matrix and where r 1is the vector
of residuals
= AS - ilz(obs) (237)
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according to (2.24), (2.25,b) and (2.26). The form (2.36) is a function
of ¢ , the vector of potential coefficients, through (2.37). The vector
€ that minimizes the quadratic form must satisfv the condition

3Q \T _ /AT A To- _

(where 0 1is a null Nc - vector) so

.E_ = (ATPA)-l ATPilz(obs) (2.39)
and the form has a minimum at ¢ provided P is a positive matrix.
Expression (2.39) above can be written

where Fp is the optimal estimator matrix corresponding to the weights i
matrix P . In general ¢ # ¢ , because, even if the signal in the data ]
{(¥12) and the unknown parameters (c) are related exactly to each other
by the matrix equations v;, = Ac . the data Vi2(obs) contains noise

n in addition to the signal. The noise n propagates into the estimate

g = Fp p—“(obs) = Fp (Va2 #n) =Fp %y, + Fon (2.41)

! resulting in a difference between ¢ and c , or error,

/ - Fp Vio= Fp n =-e (2.42)

-n

The variance-covariance matrix of these errors in ¢ , or a posteriori
random errors, is

E=Efe e} (2.43)
where E { * is the usual mathematical expectation operator of statistics.

The diagonal elements of the error matrix are the a posteriori variances of
the estimated coefficients, or formal accuracies of the adjustment. 1T

where D 1is the Ny x Np symmetrical and positive matrix corresponding
to the data errors and known as the a priori variance-covariance matrix,
then

m
[}

E{fpn (Ffp )T} =€ {Fpnnl F'}
T
Fp E {n nT} FDT =Fp D Fp
(AT D™1A)"1AT D72p p 24 (AT D™2A)7!
(AT D71A)"1= 72 (2.45)
where FD = (AT D"A)"AT D!
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Matrix
G = AT DA (2.46)

is known as the normal matrix, because (2.38) can be written
Gc=b (2.47,a)

with

T gt
A' D _\_l_lz(obs) (2.47,b)

b

and (2:47,a) is the system of the normal equations. Therefore, when
= D-*, the a posteriori variance-covariance matrix is identical to
the inverse of the normal matrix. In particular, when all data errors

are uncorrelated (E {ny nj} = 0) and all have the same standard deviation 1
s , then '
D=oc%1

where [ 1is the unit Np X Np matrix, so

G=AT g2 I A=52ATA (2.48)

and the elements of the normal matrix have the form ’
Gk = © () 2hg =97 Pﬁﬁkq (2.49)

where, in the case under study, can be calculated from (2.35).

Among the important properties of tﬁeqleast squares estimate § is that
of being a minimum variance estimate when P = D™!, which means that )
the diagona] elements of G-! (and, then, their sum or trace ty {En})
are minimized. If the probability distribution of the error is qaussian,
then the estimate ¢ is best in the sense that the a posteriori variances 3
are the smallest for all estimates, linear or nonlinear. Moreover, the i
most likely value of ¢ coincides with ¢ , so ¢ is also the maximum
likelihood estimate. When the model Vv;, = Ac is perfect, as assumed
here, and E {n} =0 , then

£ {8} = (AT DTIAYIAT DTHE {iz,}+ € {n}) = (AT D-A)AT DA ¢

wn
~——

1]

(2.50)

For this reason, the estimate C is called unbiased. Expression (2.50)
further indicates that, in the absence of noise, the estimates are identical
to the true values of the unknowns.

The rather impressive 1ist of properties of the least squares estimator
(2.39) with P = D-!, together with the relative simplicity of the theory
and rather straightforward nature of the calculations involved, have
made this type of estimator the most widely used in geodesy as well as
in many other branches of technology and of natural science. In reality,
models are never exact, statistics never truly gaussian (this would incliude
cases where the error is extremely large, but such occurrences are usually
edited-out during pre-processing), or even truly known, so the practical
implications of the theoretical properties of the est1mator are somewhat
obscure. What is clear is that (2.39) with P = D-! is a "sensible" way
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of rrocessing data, as it gives larger weights to the better measurements
(those with smaller variances), and less weight to the worst (larger
variances), at least when D 1is diagonal. If, as in the present case,
all measurements are assumed to be equally good {same C), then they are
all weighted equally. From the point of view of the error analysis which
is the purpose of this stuay, the determination of the formal accuracies
requires creatingand inverting the normal matrix G .

2.9 The Structure of the Normal Matrix

One of the assumptions made in paragraph (2.1) was that the errors
in the data, the elements n;j of n , were random, uncorrelated, and
had all the same standard deviation © . Consequently, the elements of
the normal matrix G can be calculated from (2.49) and {2.35) which,

combined, give

: even odd
0 f m#qg, «a#8, n {odd } and k {even}
ad .
Inmkq o2 Np M’"("’k)anm akm r{l-cos(pw+m@)da) , (1-cos(fuw- meAa]
haz h=3 P b & (pw + ma)s (pw - moy*
(2.51)

As already pointed out (par.(2.7)), there are many elements in G
that are zero and it is possible to arrange the unknown C%m so that
G exhibits a very convenient structure. Consider the ordering given
in expressions (2.25,c-e) to the elements of C . where

el dsTdsl ... gl g
= x 17
&n = [Com SpepnCeo)me - - Oyl

& 17

Sn = B Spepm- - S

and now separate gach cy and sy in two halves ef=°, ¥, and 5077,
1,50 o™, )0 contain only G2 where n 1% even, oX=t, 54! only

3 =mooe X nm > s Cmos Sm

Chim where n s odd. With the unknowns arranged in this way, the cp,

sy contain coefficients of the same order m, the Cpp

“cosine" coefficients and the Sp, “sine" coefficients, and each of these

are split further according to parity. If all this is done, then G can

be partitioned, as shown in figure 2.1, into blocks Gpg - Those

along the main diagonal, or Gy, . correspond to unknowhs of equal order

m , and are further par:itionegmeach into four blocks, according to o and

g, and each of these four blocks into another four, according to the parities

of n and k . A1l Gy, , except for those along the main diagonal,

are zero matrices according to (2.51). In the diagonal Gpy only the
sub-blocks where o = 3 and n and k have the same parity (dashed

in the picture) can contain nonzero elements. This sub-blocks are diagonal sub-

blocks, so the whole normal matrix is zero except for those diagonal sub-

blocks: G 1is block diagonal.

More concretely, G contains 4x(N+1)<4 diagonal blocks that are
not null matrices. According to (2.51). theelements of "cosine" blocks
(a = 8= 0) are identical to those of "sine" blocks (2 =8=1) in corres-
ponding positions. This means that only the 2x(N+1)-1 “odd n" and "even n"
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Figure 2.1: structure of the normal matrix

~

blocks have to be formed when setting up G , and only they have to be
inverted when inverting G . The smallest blocks to be inverted have only
one element and correspond to m =N ; the two largest blocks have
3(N+1)? elements each and correspond to m =0 (zonals) with n even
and odd, respectiveiy. Altogether, the 2x{(N+1)-1 biocks contain in
the order of A(N+1)® different elements, as the blocks are also symmetrical.
In the case of a general symmetrical matrix the total number of different
elements to be computed is, approximately, i(dimension)? , or #(N+1)*
in the case at hand. The reductxon in calculations when setting up G
is, therefore, of the order of 4 (N+1) . Furthermore, expression (2.13)
shows that the alMm can be comﬁu%ed from the scaled Fourier coefficients
of the an . As many h" are zero, as pointed out in paragraph
E 7), the number of operat1ons using (2. 51) rather than the general
expression (2. 49) is reduced by at least an order of magnitude. Al]l
thase savings in computing make the setting up of such an enormous matrix
(332° elements) quite feasible, although certainly not trivial when one
adds to it the effort needed to obtain the values of [,y from which
the O™ are then computed by Fourier analysis to give the al™ according
o (2.13). This whole operation required 50 c¢.p.u. minutes in the AMDHAL
470v/VI-II computer at 0.S.U., using double precision and FORTRAN H
extended in the highest optimizing mode. Another advantage of (2.51)
is that it permits the setting up of the normal matrix without first
having to form the observation equations matrix A , which is truly gigantic
(3.9 x 10° x 11 x 10* elements).

The inversion of a general matrix of the size of G , since the number
of operations required to invert a d x d matrix is of the order of
d?, would be impossibly laborious, requiring something 1ike (N+ 1)°® operations. or
thereabouts. As only the small non-zero diagonal blocks have to be inverted,
and only half of those are different, the actual number of operations is
of the order of L(N+1)* , or some 96 (N+1)% = 1.06 x 107 times less
than for a genera| matr1x Using the same computer, compiler, etc. mentioned
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above, the inversion of G required some 15 min of central processor unit
time. This is still a very large number of calculations. However, because
the inversion involves the processing of independent blocks, each relatively
small, the rounding errors due to finite register length (64 bits each dc:'ble
word) are confined so they can not affect the results in any appreciabie
way. Another property of a block-diagonal matrix is that, as the blocks

are created and inverted independently, the whole procedure is ideally
suited for parallel processing.

The programs used to form and invert G are documented and Tisted
in appendix B .

2.10 The Existence of G !

Differential measurement_, such as the relative line of sight velocity
between the satellites, tend to be associated with observation and normal
matrices that are rank -defficient, so it is reasonable to wonder whether
the inverse of G , so important to an error analysis, does in fact exist
at.all. As shownhere, this is not an entirely idle question, because
there are cases where G is singular. though fortunately not with the
mission parameters chosen in this study.

Two trivial examples of singular configurations are y = 0 , when
the whole matrix A vanishes, and G with it, and ¢ =, when all
the colums of A corresponding to odd harmonic degrees are zero. If
A is singular, G ds singular too, so G=' does not exist if

Az = 0
for some
240

Calling Z}p to the element of z corresponding to ﬁﬁm in ¢ , then,
according to (2.13), (2.22,a-b), and (2.24), the elements y; of the
vector y = Az have the form

N N
8 rcos

y; = % oL o {0 (e o2 m)t, (2.52,a)

T ge0 m=0 pgz pm ‘sin i
where 1 N .

8 - M copay 7% 2.52,b

fom GZOJ_E: ay flda) Ty (2.52,b)
with 1 sin{pw £ mO)aa

f(ha) = {

CEL IR b
pw = m 1-cos{pw=m)ia

. Y 3 Y . -
= b [(3+1) cosp% sin% + p sin P % cos 31 (expression (2.13))

[+']
#

Expression (2.52.a) is a Fourier expansion with coefficients fsm , and it

can be zero only if all such coefficients vanish, as long as the sampling
rate is higher than the highest frequency in the expansion, as it is
the case here according to paragraph (2.7). In general, some elements
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of z can be zero, so assume that Z¢ is the element of highest degree
and order that is not zero. In such case, (nu + mt) is the h1ghest angular
frequency in yj . The only terms of this frequency are fop sin(nw + m2)
and o cos(nw + m@) which cannot cancel each other out. "or both

to be zero for all must be ffim = fpy = 0 . The other relevant
factors involved in (% 52,b) are: I3y , whij c% is assumed to be not zero,
n"M  which is the Four1er coeff1c1ent of [ of highest frequency

and cannot, for this reason, be zero, s1nhu +mQ) Aa and 1-cos(ne + milka
with da > 0 , which cannot be simultaneously zero because for this

to occur must be (nw+ mi)at x w + mi)la = k2r, as La <At , but this

is precluded by the sampling ratio At~ being more than twice the

highest frequency (nw+m2)/2n and, therefore , (Nw+m)aa < (nu+mN) 2t< 27 .
The only way in which the terms of freguency (n. + m3) can vanish for all
ti for a given ¢ , is that

(n+1) cos n%— sin%— + nsinn 1"2- cos% =0 (2.53)

for some n in 2sn<N,as n=0 and n =1 have been excluded
from the mode) (paragraphs 2.4 and 2.5). This is a necessary condition
for G-! not to exist. Conversely,

(n+1) cosns sin%— +nsinn -“'é- cos #0 (2.54)

for all n in 2 sn sN is a sufficient condition for G to exist,
or G not to be singular. Fortunately (2.54) is met by all n 1in

2 s n< 331 with the chosen inter-satellite distance of 300 km (¥ approx.
0.046 rac). According to (2.53), the critical values of ¥ at which
(2.53) is met for some n in the band must be isolated points in
0sys?2 . If y coincided with some { , and this were truly a point
of singularity (remember that 2.53) gives only a necessary condition),
then one could choose v =9 + 4y, with &y arbitrari y small, and G=!
would still exist. From a practical point of view, G should become
increasingly ill-conditioned as &y + J and s1ngu1ar1ty is approached,

so eventually it would be impossible to calculate G-! numerically even
when, theoretically, the inverse does exist. For that reason the stability
of the numerical inversion of G should be chez¥ed by obtaining the dif-
ferences

n
N
]
(24
1
"
[}
N

3z (2.59)

where G is the computed inverse and z an arbitrary N. vector whose
components are chosen from a sequence of random rumbers. Tne stability can
be judged from the number of significant figures that z and GL*G z have
in commen,

For small ¢ , as it is the case with intersatellite separations,
the first term in (2.53) can be much smaller than the second term, so
the necessary condition for singularity can be written, after some obvious
simplification

sin n -g- =0 (2.56)

which is met for those critical values { where ny =0, 2r , 4r , . .
k2w , . . . Looking at the derivation of {2.13), on wh1ch (2.53) is based
one can see that the term ignored corresponds to the effect of the radial
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component of the inertial acceleration on the line of sight velocity. 1In
a flat Earth this component would be always perpendicular to the line of
sight and have no effect at all, so (2.56) could be applicable to a flat
Earth geometry. Breakwell (1979) has used a flat Earth approach, his
results showirg peaks in the noise to signal ratio, or percentage error,
at those spatial wavelengths vy satisfying the condition = ky with

k integer. The spatial wavelength on the sphere for a harmonic of degree
n is £ ; replacing y with 4T in "Breakwell's condition" ¥ = ky ,
one ge*s (2.56). A singularity in the operator involved. the G matrix
for instance,would result in the relative error being infinite at some
wave]ength,indicating complete loss of information at “.e corresponding
frequencies due to the differencial nature of the measurements. While
such singularities were not found in the spherical Efarth analysis reported
here because of the parameters chosen, there were nevertheless, some

very gentle and broad ripples in the relative error as a function of

the harmonic degree n , with maxima at those degrees where ny was
closest to k2m , as the reader can see by looking carefully at the results
listed in :ppendix C .

2.11 Least Squares Collocation

In general, a linear estimator of ¢ from 212( ) has the form

obs
2(obs) = F(vi, +n) (2.57)

c=Fy

where F is the N. x N, estimator matrix. In the case of least squares
adjustment, as the reader may remember, this matrix was called F, (expres-
sion (2.41)). As the least squares estimator of paragraph 2.8 is unbiased
when the model v,, = Ac is perfect, the error in & {is due purely

to the data errors:

g =¢c-t= -Fn (see (2.42))

The purpose of least squares adjustment is to minimize the covariances
of the elements of e, or, equivalently, the trace of the error matrix

= Ty = TeT) = T-
En E{gﬂgﬂ} E{ng_e_nf-'} FE{e }F =FDF (2.58)

Not all linear estimators are unbiased. In general

& =c-F Via 2 0 (2.59)

where e, 1is the Nc - vector of bias errors in € . The gravity field
is "deterministic" (albe1t unknown), while the noise n is
"stocﬁgsti and the errors in ¢ that one and the other give rise
to are also ”determ1n1st1c" and "stochastic", respectively. What this
difference boils down to is that the noise can be interpreted mathematically
as a random process while the field and the bias cannot. To obtain estima-
tors that minimize the total error (bias plus the effect of the noise)
a method known as least squares collocation has been deve1oped (Moritz, 1967, Krarup
1969) that treats both parts of the error in a way that is formally very
similar, by using the operator E{ } for the noise, and the operator
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M{ } (average over all rotations) for the bias. E { } is a stochastic
operator, while M { } is a geometrical operator. If &, 1is the bias
in the estimate Eﬁm and ¢, the effect of the noise, then the error
measure or "covariance" to be minimized is

ol =M iel} vl )

This is a hybrid error measure (geometric plus stochastic), but has the
advantage of being guadratic while ey and ¢, are linear functions

of v;, and n , whnich 51mp11f1es the mathematical treatment. The rotations
involved in the application of M { } are those of the system of coordinates
and, "attached" to it, as it were, of the pattern in which the data are
sampled (i.e., the orbits). After each rotation both measurement sites

and coordinates are different, and so are the values measured and the
estinates, together with the bias. M { } averages the error over all

such "possible outcomes"” (one outcome = one rotation). If the statistics

of the noise n are gaussian, so are those of <, . If ¢, =0, one

can determine the likelihood of O“m being within so many "sigmas” of

the true value, if one knows only the covariance and the mean value of

the data errors. With the "geometrical" statistics based on M | } one
wou]d need, in general, not only M {cB} , but the higher moments M {ep} ,
M{ s - . . as well, as there is no great reason at present to be11eve
that the gravity field is sufficiently "gaussian” to ignore them. Such
moments can be "propagated" (in the sense in which covariances are "propagated”)
from the corresponding moments of the geopotential. The second moment

is the covariance function (the Legendre transform of the spectrum cﬁ)
which depends only on the geocentric angle between two points on the

same sphere. Higher moments are functions of many such angles. ODeter-
mining the second moment or covariance from empirical data is not easy;
obtaining the higher moments must be even harder, so probably working

with these moments to obtain intervals of confidence is not practicable,

at least at present. In practice, the choice of any approximation technique,
such as collocation, should depend on how well it works for the sort

of problem to be solved with it. In the case of geopotential coefficients
determination, this author has conducted several numerical tests (Colombo,
1981) and found out that the square of the actual errors in C can be

very close to their hybrid a posteriori covariances when estimating ¢

with collocation. The data considered, however, were point and mean

gravity anomalies, not SST data. For a discussion of the theory and
applications of collocation in geodesy, the reader could see Moritz (1980).

To treat biases and oropagated errors in a way that is formally the
same, one could define a "variance-covariance" matrix for the biases

T
Eb =M {gb gb} (2.60)
As already mentioned in paragraph 1.2, expressions (1.15,a-c),

Mt = 05 MR P =28y M{EE CEl=0 ifafs,nik,or
m#qg , so the matrix

C=M{ccl}’ (2.61)
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is diagonal. Each diagonal element in C equals

B §of (2n+1)"1 if ng< M
nmkq - Jo® (2n+1)-! if n> M

where the Scﬁ correspond to the discrepancies C%m-E%m between the actual
coefficients and those of the reference model (paragraph 1.2). Replacing
(2.59) in (2.60) and multiplying out one gets

By = M {(c ~ F 12) (c-Fian ' =Micc' boMc 91, FTj + M {Fiy,ils F1)
= C - 2CATF' + FACATF' (2.62)

because 212 = Ac . The error measure to be minimized is the trace of the
combined error matrix

+ € =C - 2CATF + FACA'FT 4 FDF| = C- 2CATFT + F(ACA +D) F'
(2.63)

according to (2.58) and (2.62), or tr {Er} . The optimal estimator matrix
minimizes t,. {E} , so it must satisfy the matrix equation

£ -
" ET Eb

3tr T

+ 1 (Er) = F (ACAT + D) - CAT = 0 (null matrix) (2.64)

This equation is known as the "normal" equation. The solution is

F=CA' (ACAT + D)™ (2.65)
Using the matrix identity
AT (ACAT + D)-1 = (ATDTIA + C-1) AT D2 (2.66)

(see, for instance, Uotila (1967), equation (29)) the optimal estimator
is, finally, according to (2.46), (2.57), {(2.65), and (2.66),

= (aTn-1 -1y-1 a7 p-1 3
(A DA + (C ) A D !12(°bs)

Py

([e b
1]

L TR

"

(6 + C=1) ATp™1 V12 (ops) (2.67)

gl )

which, except for the term C-! , is the same as expression (2.39)

(with P =D-") for leastsquares adjustment. If all the degree variances
of of the potential are non zero for 2 < n < N, C-! exists, G + C-?!
is positive definite (sufficient condition for F in (2.65) to minimize
tr {ET} )}, and (G + C™*)~! exists as well, regardless of whether G

is positive definite or singular. This is the case in the present study,
so the problem discussed in paragraph 2.10 1is not relevant, at least

in theory, to least squares collocation. I1l-conditionina in G + C-!,
as distinct from singularity, is another matter. Fortunately, the stability
of the inversion of G + C! was as good as for G alone. As C-! is
; diagonal, G + C~! retains the block-diagonal structure of G .

TN e rme e

} §xpression (2.63) can be transformed as follows, when F satisfies
; (2.64):
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C-FAC =C - (ATDA + C)2ATDAC
[1 - (ATp1A + ¢=) ATp=1AlC
(ATp-1A + ¢ )[ATDATCT -ATD"MATC

]

i

(ATD-1A + 1)1 ]

(G +Cc-1)1 (2.68)

so (G + C1)"! js the "hybrid" variance-covariance matrix of the estimates,
corresponding to G™! in least squares, from which it differs only in

the term C-! . Expressions such as (2.67) and (2.68) have been used
a]re§dy in satellite geodesy for modelling the geopotential (Lerch et al.,
1977).

In general, the bias matrix

E

b = (ATp=1A + ¢1)™ - £ = (G +C)7- (6 +C)TH6(6 + €

(G + CTL)1C-1(G + C™1)72 (2.69)

is not zero, so the optimal estimator of collocation can be a biased es-
timator. Before the introduction of collocation in geodesy, the deliberate
use of biased estimators in this discipline was unusual. In other fields.
statistics for instance,biased estimators have had considerable application, for
example in so-called “ridge regression” (see Bibby and Toutenberg, 1977)
which is formally very similar to least squares collocation. The intentional
use of biased estimators is quite common in communications, contrcl engineering
and in data processing generally, where the Wiener and Kalman filters

have many uses. Both types of filter are, in fact, biased estimators

whose mathematical formalism resembles that of collocation. But biased
estimators are extensively used in everyday life too: every radio and

audio system contains filters that "estimate" the desired component in

the input signal (voice, music) by rejecting those frequencies at which
unwanted signals, or noise, are most prevalent, and reinforcing those

where the desiredOnes dominate . While the output is made inteligible,

the signal itself has been distorted because those frequencies where

it overlaps the noise have been smoothed out while the others have been
boosted. If no noise were present, the true signal would not be identical

to the "estimate" or audible output, the difference being a bias. The
example is quite germane, as the amplifiers and filters in question are
usually Tinear, like the estimators of collocation.

Estimating the covariance function or the power spectrum of the
gravitational potential from existing data, always incomplete and imperfect,
isaproblem that entails some deep and difficult theoretical gquestions
(Moritz, 1980). From a practical point of view, one could estimate the
degree variances needed for C in (2.67) and (2.68) from the SST data
itself by using expressions (1.18) and (1.19,a-c) to set up observation
equations relating the average spectral power S_ (observable, in principle)
to the unknown 52 (0 < n < N), and then adjusting the latter in the
manner proposed by Wagner and Colombo (1979) for high-low SST data. The
short-arc spectral technique discussed there for circular orbits was
later extended by Wagner (1980) to elliptical orbits as well.
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In the last analysis, how well the 0% must be known depends on how
sensitive the estimates and the posteriori "hybrid covariances" are to
errors in the adopted values of the degree variances. In section 3 there
is a comparison of results obtained using two different models for the
pcwer spectrum, showing low sensitivity even when the discrepancy between
the spectra is considerable, so this may not be a serious problem.

Throughout the discussion one has considered the estimation of the
actual potential coefficients (hy instead of the scaled Cﬁm . The
only real change needed is in expression (2.61), where the scaled elements
of the diagonal of C are

N Y a2n S0 (2n+1)?] n< M
C o g (GM a X 2n -1
nmam o N+ on (2n+1) n>M (2.70)

After inverting the thus modified (G + C') matrix, the actual a posteriori
degree variances

1
Fe = 1 g ML)’} + E[(C )}, where e =& -,

€
m m
n a=0 m=0 n nm n

can be obtained from the scaled a posteriori variances

1 n . ~
op= 1 ) MG+ (el

a=0 m=0
with the relationship
P R+ ~2
g = " &g (2.71)

2.12 Accuracy of the Computed Geoidal Heights

One of the main geophysical applications of GRAVSAT should be to
provide an accurate description of the geoid at sea, as reference surface
for oceanographic studies of currents, eddies, etc. The geoid height,
or difference in ellipsoidal height between the geoid and the reference
ellipsoid, is

1 o n
N(r, ¢,A) = r ' Y (6, 2) (H" (2.72)
oo oo nkp Cm o 7

assuming that all masses are contained inside the ellipsoid. When this

is not the case, and the C% correspond to the expansion of the geopotential
outside the bounding sphere Ti.e. those that can be sensed by SST data

for 2 < n s N), expression (2.72) can be said to correspond to the free

air geoid. As the geoid experiences periodical and secular variations,

what is discussed here should be regarded as an average geoid for a given
period of time (say, during the GRAVSAT mission), but this average can

be corrected for the main fluctuations, such as tidal effects, to obtain

the instantaneous geoid.
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Us;ng the estimated potentia: coefficients one can compute the first
(N + 1)%- '3 terms in (2.72) (the band-1imited assumption does not apply
at sea level)

N nAOL o a\n
Z? mZO c& 1 (0.0) () (2.73)

and the difference between (2.72) and (2.73) is the error in geoid height

R 1
N(r,s X)=r }
a=0 n

N n 1 = n
oo, Ay e b1 L e T (e ] pot o (4
a=0 n=2 m=0 nm nm ‘r aso d;l meg nm nm 1}2 )

The square of this error is
< @

1 n n
v 2n
SN(r,0,0)2=r? % 7T o7 v oot orov (&,
a=0 ',3:0 n=2 k=2 m=Q q=0 nm kq nm kq r
n

e ]
eC < N
where Gﬁm = nm
C%m n>N

If the Cpp are obtained by least squaresadjustment , the variance of the
errors wouid be

E ©ON(r, 0, X)7{=0%EN(r, ¢, 1)

Keeping r constant and averaging o%y(r,¢ ,X ) over the unit sphere
(i.e., with respect to ¢ and A alone)

5 L
aZeN(r) = - fofo o28N(r, ¢ . X cos ¢ ddd A =

=Y.2 a y2n o £ nETT'. 3 -
T e nzk g (=) E{0S, ﬁkq} % jo | Yﬁq cos¢dadr =

nmnm* r

N o

_ a  a\2n _ a\2n
=r? ] o% () =r3( g ofe, (F)7+ ]
anm n=2 n=N

2
ISR RRICRL)

because of the orthogonality properties of spherical harmonics. In an entirely
similar way one can arrive to exactly the same expression for the mean

square error when the Cﬁm are estimated by collocation, except

that dEN is now a hybrid degree variance in the sense explained in

the previous paragraph. As the error depends on r , and r 1is not

constant on the ellipsoid, one could settle for an "average" error by

choosing r = a , where a is the mean Earth radius, so

N ®
da = a2( L, o2 ) 2.76
N mzz 95 nZN+1 n (2.76)

which is the expressign used in section 3. Notice that the correlations
between the errors eC%m , which exist when they have the same order
m because (G + C1)=! has the same block-diagona) structure as (G + C'),
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are eliminated from (2.75) and (2.76) by the orthogonality of the im(d,1) .

To obtain the accuracy of the geoid height computed with the SST derived :
model, one has to know the a posteriori accuracies of the coefficients,
represented by the o2e{fnm, and also the actual degree
variances of the field #or n>N . The first we know, to some extent,
as formal accuracies derived from the diagonal elements of (G + C-*)~! ;
the second are largely unknown, as they correspond to the part of the
potential not analyzed yet. Therefore, one must adopt some approximate
model for this spectral "tail" between N and « , based largely on indirect
evidence, which means that the estimated contribution of this "tail" to 3N,
or truncation error, must depend on rather weak assumptions. A further
problem, of more theoretical nature, is that (2.72) is valid only when
the potential can be expanded in spherical harmonics. When there are
masses above the geoid, as it is the case in reality, the expansion is
known to converge only outside the smallest sphere bounding all those
masses, or external bounding sphere, and not necessarily at the Earth's
surface itself,where it isactually needed. This question is partially
answered by a theorem first proposed by Walsh (1927), reported later by
Keldych and Lavrentieff (1939), and independently stated by Krarup (1969),
according to which there are always spherical harmonic expansions 1like
the one in (2.72) that approximate uniformly the potential, to within
any arbitrary accuracy, on and above the Earth's surface. A consequence
of this theorem is that the T¥ym for n < N, with N finite, in the
convergent expansion outside the external bounding sphere (which can be
detected by SST) must differ from those in some of the internal approx-
imating expansions also by an arbitrarily small amount. In this sense,
the coefficients detected from SST data can be considered to be valid
also at the Earth's surface.

The approximating expansions in Walsh's theorem converge uniformly
to the functions they approximate above the topography. Their analytical
continuations inside the Earth, where they also take definite values,
have no physical meaning and are, thus, free from the natural constraints
that determine the character of the functions represented (potential,
geoid height, the estimation error 3N according to (2.74)) above the
topography or bathymetry (near the sea surface, for example). The free
air geoid, say, coincides in the limit with the true geoid wheore this sur-
face runs above the solid Earth, so it is rather smooth and gentle in
such a region, but it can be argued that it may be much rougher in places
elsewhere, under the terrain. The mean square value of 3N in (2.76)
corresponds to an average over the sphere of radius r = a . This can
be interpreted as a spherical approximation to the reference ellipsoid
after all masses outside it have been removed by an atmospheric and topo-
graphic correction. This is the interpretation made in Section 3, and
it involves a spherical approximation error not accounted for in (2.76).
One can also regard the average as being done on an actual sphere that
dips in and out of the topography and, more importantly, of the equatorial
bulge, so a correction for the masses above this sphere is too large to
be reliably computed. In this case the average includes the squares of
true errors 3N above the Earth's surface, and of the analytical contin-
vation of 3N below. As the continuation can have a very different character
from that of 3N in free space, one may wonder just how meaningful s
this average, how well does it represent the real errors, particularly
where one is most concerned: near the sea surface, for instance. Finally,
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the presence of sharp features such as ridges, trenches, cordilleras, etc.,
results usually in strong variations of the geoid which may cause oscil-
lations in the truncated series of the estimated N(r, ¢, A} of the type
called "Gibson's phenomenon” in Fourier series, oscillations that may
affect the practical use of the global model in areas that are among the
most interesting from a geophysical point of view. While all these problems
may have simple solutions, none are known to this author yet, so there

may be some need for improvement in our present understanding of these
rather basic questions, and for a grain of salt when taking some of the
results distillied from existing theories. With such reservations in mind,
one can regard the undulation estimate of (2.73) as ogtimaI in the sense
that if the SST data were used to estimate N directly, instead of finding
the Cfim first, the result would be exactly the same. This is so because
tne field at satellite hejght hds been assumed to be band limited, and

in such case any linear combination of the CHm , such as N{(r, ¢, \)is
according to (2.73), can be optimally estimated by replacing the CHm

with their optima) estimates Cﬁm in the linear combination (see Colombo
(1981), paragraph 2.18). The truncated part (n> N) 1is regarded here

as an additional, unknown signal on which there is no information in the
sate11;te data, while the terms with n < N constitute the estimated
variable.

2.13 The Effect of Some Mission Parameters on Coefficient Accuracy

The diagonal elements of the inverse of the normal matrix, 025%%n
in the sort of notation used for the elements of G in paragraph 2.9, erend
on the values of certain mission parameters, such as data accuracy, sampling
interval, mission duration, etc., according to simple formulas. Such
formulas enable one to recalculate the accuracy of the adjusted coefficients
for different values of those parameters without having to repeat the
lengthy computations required by the formation and inversion of the normal
matrix. This paragraph contains the derivation of some of these convenient
formulas, both for least squares adjustment and for least squares collocation.

(a) Least Squares Adjustment:

When D = 5?1 , where I 1is the Np X Np unit matrix, the normal
matrix is

TI-1a = g-2ATA

G = ATD-1A = o=2 A
and the variance-covariance matrix is

61 = g2(ATA):
so the diagonal elements of G~! are related to o by

czeg;nm(c) = (53)2°2€zgnm
The elements of G depegj;?n the sampiing interval At through the

(ao) (2.77,a3)

number of samples N, = (expression (2.51)). Consequently, the elements
of C are inversely proPortional to At , and those of G-! are directly
proportional to it, so

2Faa (At)

9 “nmnm

= (FE) otene (at,) (2.77,b)
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As the elements of G are directly proportional to T , the length of

the mission, those of G-! should be inversely proportional to T , provided ‘
that T =k T, , where k 1is an integer and T, the value originally ]
used when setting up G (i.e., 179 days in the case studied in Section

3). As the orbit has a grand period T, , extending this period k times
results in the orbit being repeated alsoc k times, and a measurement

at any given location being taken k well, so the adjustment
contains repeated but uncorrelated measurements. Conseguently
-) O.a To\ 2 Qo
nmnm(T) (T';U 8nmnm(T°) (2.77,¢c)

provided T/T, is integer.

For small changes in height above or below h (the height used to
calculate G orwg1na1]y) the changes in satellite angular velocity « and,
consequently, in the shape of the groundtrack of the mid-point, and in
the distribution of the measurements along it are small, too and can be
ignored. 1If ¢ 1is kept constant by chang1ng the separatxon o between
satellites so s1n-¥% amne zsg—ﬁz is unchanged, then A and G will
vary so little as to be cons1 ered independent from h . The de-scaled
diagonal elements of G~! are then related to h as follows

o gﬁnm(h) (:I% )2n o’e z;nm(h°) (2.77,4)

where a is the mean Earth radius. Expressions (2.77,a-d) can be written
together

62e%  (5.at,T,h) = ALT a”‘ 2n 02¢%  (54,At0,To, o) (2.78)
nmnm [of} At nmnm

1 n
The degree variance of the error is o%e¢p = ] 1 o?cCo
n nmnm
a=0 m=0

S0
ozen(c,At,T,h) = g ﬁ§T° a+h)* no? € (00,Ato,Tosho) (2.79)

in accordance with (2.78), provided T/T, is integer, |h-he| is small
compared to R = a+h , and y 1is kept constant.

(b) Least Squares Collocation:

Rummel et al. (1979) have shown how a singular value decomposition
of the normal matrix greatly simplifies the recalculation of the a posteriori
variances with different levels of data noise. This idea can be adapted
to the global case under consideration. It follows from the previous
discussion that

2
6'(0.,8t,T) = ZREL- G'(00,8t0,T0) (2.80)

where G'(00,At,To) is the nosmaT matrix G of least squares adjustment
pre- and post-mu1t1p11ed by C* and calculated with the parameter values
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Jo, Atgs To . If Ao is the diagonal matrix whose diagonal elements X;
are the eigenvalues of G'(gg, Ate, To), if all the X, are different

and nonzero, and if M, 1is the matrix whose columns m; afe the corres-
ponding normalized eigenvectors of G'(cg, Ate, To), SO miy' my =1, then

2
' (o, At, T) = %ﬂ- Mo Ao MY (2.81)

It follows that
¢t (66.at,T) + c-1)ct

G'(0,0t,T) + 1

GzAtoT
Gatty Mo A Mo+

The eigenvalues of G'(g,At,T) + I are ofateT A; + 1, while the eigen-
vectors are those of G'(0,At,T) . The quéﬁvéctors of a real symmetric
matrix with distinct eigenvalues are orthogonal and equal in number to

the dimension of the matrix, so M, is a square orthogonal matrix (the
columns are orthogonal unit vectors, if_one assumes that all the );

are different). Consequently, Mz = M{ , so

2
(6'(c. at, T) + 1) = Mo(BRHI Ag + 1) G (2.82)

u

Therefore, the de-scaled diagonal elements of the inverse of the normal
matrix,

-& ' -1 'i = 'i OgAtoT -1 T -%
C*(G'(c, at, T) + I)72 C o M°(57ZfT; Ao+ 1)°1 Mg C (2.83)
are N+u
aoe _ 2n+l T ,ofAt,eT - R
Peomm = S7 M (57aetry Mt DTy TEmny (2.84)

where o’g%ﬁnm has the same position in the diagonal of (G + C-1)"?

as \Aj 1in the diagonal of A, . The presence of C-! in the expression

of the normal matrix seems to preclude a simple relationship between

the a posteriori variance and, h 1ike that of (2.77,c), because C depends
on R=a+h, so G' =C? G ct and Ay are also functions of h (expressions
(2.70) and (2.81).

While not as straightforward as (2.78), (2.84) is relatively easy
to apply, compared to a full recalculation of the normal and its inverse.
To apply this expression one needs to have the eigenvalues and eigenvectors
of the normal, instead of its inverse. Qbtaining either requires much
the same amount of computing.

2.14 The Right Hand Sides of the Normals

What follows, though not applicable to the error analysis that is
the main subject of this report, is relevant to the question of data
processing discussed in Section 5.

The normal equations of least squares adjustment and of least squares
collocation have the same independent terms which, in vector form, can
be represented by the Ne - vector b
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T p" i”(obs) (expressions (2.47,b) and (2.67))

b= A

An individual component of b , corresponding in position to Cj;,m
in ¢, can be written

= T _ 1 (ty)
ba (_nm) D~ Vlz(obs) = —3 % anm 1 Vlz(obs) (2.85)

where gf"nm is the column vector in A corresponding to che unknown Cnm
(paragraph 2.7). According to (2.24), the elements of &m are

1 " om ( SUpetmty, M)+ S((pw-mOtj la)
al (t.) oy Z a (pw+m@ < (pw=-mi)~ (2.86,a)
p=z -C((putm@ti, &) -C((pu- mPt;,0)
(pw+my < (pw-mij2
n Ci%uﬂ-mﬂ)%iz,zsa) -S{{pw- m@t%Aa)
al (t3) =L 7 oMM pwtm (pw- mi (2.86,b)
€)= G L % S((put mti,0a) -S((pu- m)t; .Aa)
(puw+ m) (Pw- mif

The C((pw + mQ)t;j,sa) and S((pw - m2)tj,Aa) are orthogonal funcions
of t; , according to (2.34,a-b), so the data w (68 can be expanded
into a sum of these functmns

;“(obs) ﬁ’o mi_ wpm C((pw +mQ)tiJ.\.a) + ;g‘}m s((pu+mQ)ti,Aa) (2.87)

where is_ the qumst frequency as defined in paragraph 1.2, while
Ny = ng‘IN —Afthe me ) me coefﬁczents an fe obtained from the or-

dinary Foumer coefficients in v, ¥ L Apm cos(pw +mQ)t; +
+ Bpmsin (pw+mld)t, p=0 m=-Nr
witn the relationships
o0 - 3 -
Vom Apm sin(pw + mQ)aa + Bpm (1-cos{pw +m)Aa) (2.88,a)
1 = - .
i = Apm (1- cos(pw + mQ)aa) + Bpm sin{pw + mR)Aa (2.88,b)

According to (2.34,a-b), (2.85), and (2.86,a-b), the elements of b are

vom + Q 0
po = Np g nm ot (2 29,a)
= a - ,a
nmoof8a o2, P wﬂ’” 5 -m
=0 -0
me - Vq-m
and N n nm W+ w (2.8 )
= —f a 2.89,b
g‘ad pgz P v1 v;

0 if m#0
where 2z = ‘1 if m=290
(as in (2.20)) -45-




1
I
t
|

where, as before, the upper parts of the curly brackets correspond to (n-m)
even, the lower to (n-m) odd, 2 * = + 2 ,and p and n have

the same parity. 1-cos{pw + mQ)Aa
The Fourier coefficients Cpp , S can be obtained by means of the

Fast Fourier Transform in any of the special forms designed to handle
data sets too large to store in the central memory of a computer.

2.15 Oblique Orbits

The error analysis reported in this work is concerned only with
polar orbits, which provide the fullest data coverage because they include
the polar regions. In the case of oblique orbits, the inclination of
the orbital plane with respect to the equator is neither 0° nor 90°.
With obligue orbits, even if the other assumptions in paragraph 2.1
are maintained, expression (2.9) for the line of sight inertial accel-
eration, which is the starting point for deriving the observation equa-
tions, has to be modified. Calling , as in Figure 2.2, F to the geo-
centric angle between the ascending node and a point P along the orbit,
and L to the longitude of that node, the band-limited gravitational
field potential can be written as follows

n n _
Ve, o) = S Z L Frmg( LG cos((n-20) F + nL)

+ {S"m} sin((n-2q) F + mL)] (2.90)
cnm

where the upper part of each bracket corresponds to (n-m) even and the lower
part to (n-m) odd; . 1is the inclinatijon angle between the equator and
the orbital plane; F and L are functions of time

F = [“’t]modm (2.91,a)
and
L=-[la - 80 Ntleg (2.91,b)
= 'EQ't]modzn
where
g(1) = -1.35 x 1078 cos1 rad s~} (2.91,¢)

is the rate of precession of the node, which is zero for polar orbits

(= ;r), anq(ff is the normalized inclination function

YZn¥l  (m=0)

min(q,k) " n-m-2t
= - sinl
anq(l) B 5 93 n- t n-m-2t) " 22{n-t)
2(¢n+l)(n-m)!
/ (n+m)]
m
-~ m n-m=-2t+s m-s c-k (2.92)
xng (S)(c051f2 e ) (q-t-c) (-1)
-46-




n-m

where k is the integer part of and c¢ s summed over all values
that make the binomial coefficients nonzero. For the derivation of (2.90)
and (2.92), see, for instance, Kaula (1966), Chapter 3 (the notation

is somewhat different).

The line of sight between the satellites lies always in the instan-
taneous orbital plane. The inertial acceleration can be decomposed into
three orthogonal components: the radial, the normal to the radial in
the instantaneous orbital plane, and the perpendicular to this plane.
0f these, only the first two accelerations have nonzero projections on
the direction of the line of sight. The radial acceleration is

n

N n
BV_ &M 2 (a )n ( C
=7 TT 2" (1) T Fong () [{8MM cos((n-2q)F + i)
r re nZO m=0 q=0 " Snm
+ {gzm} sin((n-2q) F + mL)] (2.93,a)
and the normal to the radial acceleration (in the instantaneous orbital
plane) is
v oM g f (2" g F (1) (n-29) [ {‘Cnm} sin((n-2q)F + mL)
r 8 -F_T n=o m=0 r q=0 nmq Snm'
+ {gnm} cos{(n-2q)F + mL)) (2.93,b)
nm
The coordinate L is common to both satellites, as their orbits are
coplanar. Adopting F = . , the midpoint nodal distance, as the

other independent variable [r = R is fixed), the modified inertial line
of sight acceleration (inertial accel. minus constant term due to even
zonals) is

ara(RFL) = -2 RF-0) + 2 RFeE,1) sing

+ ‘%(gg (R,F*—%,L)*%(R,F*‘%, L) COS-%' a4 (294)

Replacing F and L with t as the independent variable in (2.93,a-b),
substituting the LRy with the scaied ¢%m » introducing p = n-2q9 as
subscript, instead of g , eliminating all terms of frequency zero, and
replacing the result in (2.94), one can finally arrive to an expression
for the observation equation resembling (2.24), after a rather laborious
process quite similar to that in paragraph 2.2:

N n S((pw+m2')t;,Aa)
1 nm 1 -
— ¢ - ( ) ! 1 (pw+m$’2!)
Bl e Gl
S((pw-m2')t,,La)
e ) ((o0-m )t gaa) (POm ™) s

: ¢ C((pw+me')t, ,da) e
* S pzz anm(EiEQ(t) {S((PwJ-mQ')ti,Aa)!(p'*.mQ )




-

-C((pu~ me )t1,~a) fti)

\=2 _ t A

where

n?_}B)(\ = ZF 7{1 ) [(n+1) °°SpITS‘"1T*'p s1np3? cos:r] (2.96)

While their coefficients are now different in each pair, corresponding pairs
of frequencies puzml and puw=xm' , in the same order, appear in (2.24)
as they do in (2.95). As a result of this, the same columns in A are
orthogonal to each other r$gard1ess of the angle : and, therefore,the

same elements in G = c="A'A are zero as before, so the normal matrices

of least squares adjustment and least squares collocation have the block-

diagonal structure shown in Figure 2.1, paragraph 2.9, for oblique as well

as for polar orbits. This is true provided that « and 27 are congruent,

so the total number of satellite revolutions N, and the total number
of apparent turns of the Earth in a node-fixed system of coordinates,
during the whole mission, Np , are relative primes.

For polar orbits, the inclination functions have the property
TT T
F m(ﬁéﬂg (= nm(ﬂ%E)(-gﬁ (2.97)

(p #0, p and n with the same parity). Comparing (2.13) and (2.96)
one gets, therefore,

ﬁg"‘ = Zan(rlER)(:?r_) (2.98)

hnm

n-m F-

Consequently, the Fourier coefficients of the [nm used in the
case of polar orbits can be calculated us?ng the formulas

/ _ R n-
o JZAFT  (m=0) m%n(k.—zﬂ) (2n - 2t)!
P JAZn+1)(n-m)!| t=0 T {n-t)7 (n-m-2¢)7 22{n-t)
no+ml

n-m-2t m -k
oL O (et (1 (2.99)

derived from (2.92) with 1 = 3 This formula is an alternative to
the use of the Fast fFourier Trgz;form as explained in paragraph 2.7.

The similitudes between (2.24) and (2.95) indicate that the computer
programs needed to carry out the error analysis of a mission where the
orbital plane is inclined with respect to the equator are very similar
to those for polar orbits explained and listed in Appendix B. Reasoning
once more as in paragraph 2.9, 0ne arrives to an expression for the general
element of the G matrix
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iF 42 ) ‘
D if +#2, mfag, n odd! 2" K iguent
918 =
nmkq min(
k) .
N LA km (-cos(p .+ m*YAa)
Qﬂ'f-/ a Z a ( ) ( \) \rpm T mQY)“

n- R
2 =) 5
k 1~ -me')a
' Olr(":“_2_."") ) (:—g—+k )1) ( g:;j(-&jmar) ~l :

that is comparable to (Z2.51}), showing at once the similitudes and the
differences between the polar orbit and the obligue.

Figure 2.2: Geometry of tne Oblique Orbit
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3. Numerical Results

This section presents the results of the error analysis whose theory
has been given in sections 1 and 2 . The calculations have been done
in accordance to least squares adjustment and to least squares collocation,
and both sets of results are shown for comparison.

3.1 Spectral Model and Error Formulas

The degree variance of the error is, according to paragraph 2.13,

n 1 '
glc, = § ooy (3.1)
n mzo f0 nmnm
2w ot
where 7 nmnm  is the variance of the estimated coefficient Cpp - The
relative error per degree 1is
p = JEn (3.2)
n n
where
o = E Z : (3.3)
m=0 =0
is the degree variance of the n harmonic of the potential. The set

of all oy for 0 £ n <= js the power spectrum of the potential. This
relative error, multiplied by 100, is listed as percentage error per degree
in the various tables shown in this section. To calculate (3.2) it is
necessary to know the power spectrum, the Gn . The spectrum, like the
potential itself, is not entirely known, but there are estimates of the

o° obtained from the analysis of terrestr1a1 and satellite data. For

Jow degree harmonics the 312 can be calculated using (3.3) with the
values for the Cdy taken from one of the existing spherical harmonic
models of the 90tent1a1 For higher terms, the “tail" beyond the highest
degree whose Cjy, are known, one can choose among the several formulas

for 3% as a function of n that are available, each based on a different
type o? approximation, or on different data. For this study the degree
variances up to degree n = 100 were taken from a spherical harmonics
model complete to n = 180 , obtained by Rapp and associates at OSU from
the analysis of a global set of mean 1°x1° gravity anomalies using quadrature

formulas. The anomalies ihemselves were obtained from eravimetry and altimetry

by means of least squarescollocation. As a further step the anomalies
were adjusted in a combination solution that included the coefficients

of GEM-9 as data. For a report on this adjusted data set, see Rapp (1978)
and also Rapp (1979a). GEM-9 is described in (Lerch et al., 1977). If
one ignores orbit errors, then expression (1.23) is reduced to an identity
between the time derivative of the residual line of sight velocity and

the residual line of sight inertial acceleration. The residual inertial

acceleration corresponds to the difference Regween the true field and the field

mode] used to compute the orbit. If Cfy is a coefficient of
the model, and NM the maximum degree in that model, then the geopo;entia]

coeff1c1ents corresponding to the residual accelerations are = Cﬂm -
Chim(M for n SNM, and Cg, for NM < n < “‘. The d ﬂ ariances
of tne power spectrum are, there ore, 62 = ol Cnm - Cfim ? 2 for
SNM, and o = men n (Chm Zgor NM < n. TWe 3 are the degree
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variances corresponding to the errors in the reference field. As these
errors are not known exactly, one must use some "likely numbers" instead,
such as the formal error variances of the coefficients obtained during
the adjustment of the reference model. This criterion has been adopted
here, the error variances being those of the first NM degrees in Rapp's
model, with NM=20 . For n> NM, the of as implied by Rapg's coef-
ficients have been used up to degree 100 . For n > 100 the oy have
been calculated with the two-term formula

o? = G%;P(n- 1)1 [AL(r + A) T S1™2 4 A2(n+8) M (n- 2) 522 (3.4)

where a = 6371 km, % =982026.41 mgal A=1, B=2 , Al = 3.4050,

A2 = 140.03, S1 = 0.998006, and S2 = 0.914232 . These parameter
values were obtained by Rapp (1979b) by fitting the formula to the empirical
variances of his 180, 180 model and other data. In summary:

For 2 ¢<n < NM , the error degree variances ¢*,, of Rapp's model;
for NM < n < 100 , the degree variances of Rapp's model;
for 100 < n < 2000 , the of according to (2.4). The harmonic con-
tent of the geopotential, according to that formula, is negligible for
n > 2000 .

The error in geoid undulation due to the errors in the coefficients
up to degree n has been calculated with the formula

n
o%eN_ = a? ) cZe (3.5)
n k=2 k
If no coefficients above n are estimated, the total error must be
2050 , ( )
g%eNe =g2¢N_ + a? o 3.6
T n k=n+l K

(Compare to (2.76)).

Expression (3.6) depends on the ‘tail” of the spectrum containing

the high frequency terms. The higher n , the least that is known about

od » sO this “tail” is the leas* reliable part of the spectrum model,

and the total error calculated with (3.6) is the least credible among the
results. Originally, when the least squares collocation results were
obtained, the total error was not computed, though its calculation was

added in the main program afterwards, when other results were found.

For completness’' sake, the punched output of that first run was read by

an auxiliary program, which then produced the printout shown in Table

3.2, including the tota) error in the last column, and also the full listing
of Table C.2 in Appendix C.A minor mistake in the auxiliary program resulted
in values of the total error that are incorrect. To obtain the "true"
values e, , the listed values e'n should be corrected according to

the formulas

e, = (e'2 +0.1074)} (3.7)
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3.2 Results According to {east Squares Adjustment

Table 3.1 shows the accuracies of potential coefficients and geoidal
undulations estimated from SST data collected during a mission whose para-
meters were:

Circular, polar orbit,

satellite height: 160 k. aua,

intersatellite separation: 300 km,

accuracy of the data: vZ x 10 °m s~%,

averaging interval: 4 s ,

sampling interval: 4 s ,

length of the mission: 179 days ,

maximum degree and order in reference model: 20 .

The error analysis was carried out according to least squares adjiustment
theory, as put forward in paragraph 2.8. The first column shows the relative
percentage error, which is the ratio defined by expression (3.2) multiplied
by 100 . Notice that above n = 270 the error exceeds 100% consistently.

The size of the the errors oecome so large that the total undulation
error, which decreases steadily up to n = 270, according to the last
column, begins to increase quite perceptibly once more. The last but one
column shows the error up to n , according to expression (3.5). The
second column contains the values of 2(—ﬁdznczen , the variance per
degree of the error in the scaled coefficients {see expression (2.70)

in par. 2.11). Notice the very low percentage errors for n < 100 , which
are much the same as those shown in the next paragraph for least squares
collocation.

As explained in the last part of paragraph 2.10, the error in the
recovered coefficients may show local peaks at those degrees satisfying
the condition

ny =21k (k =1, 2, . . .)

Since v = 2sin~}{ %9 , for a separation of 300 km the maxima should occur
within the band 0°s n < 331 at degrees n = 136 and n = 273 , approx-
imately, the next peak above the band being at n = 410 . Thelisting

in table 3.1 is too coarsely spaced in n to show these peaks, which

are rather narrow features.each atop a broader rise that surrounds it,

but they are quite clear in the detailed listing of Table C.1 in AppendixC.

The values that appear both in Tables 3.1 and in Table C.1 can be
modified according to expression {2.79) in paragraph 2.13, to obtain the
results corresponding to missions with different parameters. Values cor-
responding to undulation errors (last two columns) are in meters.
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3.3 Results According to Least Sguares Collocation

Table 3.2 shows the results corresponding to least squares collocation,
the principle of which has been explained in paragraph 2.11. The mission
parameters are the same as for Table 3.1. Comparing both tables one can
see that the collocation accuracies are consistently better than those
for least squares adjustment, particularly above degree n = 210 . The
results listed in the last column of this table, and also of Table (.2,
Appendix C , have to be corrected according to expression (3.7), at the
end of paragraph 3.1. When contrasting tables 3.1 and 3.2 one must bear !
in mind that the first corresponds purely to propagated noise, while the i
second contains hybrid variances: nogise plus bias. The peaks in the
error mentioned in the previous paragraph are much less noticeable, in
fact the one at n = 273 has disappeared altogether (Table C.2)}, and only
an "acceleration" in the increase of the error with n remains in the
neighborhood of the missing peak. Nowhere the error exceeds 100%, also
according to the theory.!l

Table 3.3 1lists the accuracies corresponding to a mission with the 1
same parameters as in the preceeding tables, except that the accuracy
of the data is now four times worse, i.e., V2 x 4 x 10~®ms-! .

Table 3.4 corresponds to the same parameters as in Table 3.1, but
the height has been changed to 220 km above the Earth.

Table 3.5 is for the same parameters as Table 3.4, with the data
noise increased to vZ x 4 x 10~°m s~! . The results for Tables 3.3 through
3.5 ave clearly worse than for Table 3.2, as can be expected, because
the data is noisier, the signal weaker (higher altitude), or both, com-
pared to the case of Table 3.2.

Table 3.6 corresponds to the accuracies that would be achieved if
all the coefficients in a given degree could be estimated with the same
accuracy as the zonal harmonic. The results were computed with a modified
version of the main program of Appendix B that sets up and inverts only
that part of the normal matrix corresponding to the zonals. In this way,
an approximate analysis can be carried out at much less cost than the
complete studies of tables 3.1 through 3.5. The mission parameters in
3.6 are the same as in Tables 3.1 and 3.2. In Table 3.7 the separation
between satellites has been changed to 150 m , and in Table 3.8, to 600
km. The results in Table 3.7 are clearly much worse than for Table 3.6,
showing a particular deterioration at low degrees due to the differential
nature of the SST measurements that tends to eliminate the low frequency
information, so the percentage of the error in the estimated coefficients
increases as the satellites become closer. Table 3.8 shows the smallest
band error and the best accuracies, but these are quite irregular because
the error peaks in this case are spaced closer than in the other cases,
and are much more prominent, so that they can be noticed even with the
coarse spacing in n used in the table.

From the results given in this paragraphone can conclude that the
orbits should be as Tow as possible, and the separation between satellites
as wide as allowed by natural limitations, the main among which is the
need to keep the radar beam from entering too deep into the upper layers
of the atmosphere at the mid point. Data noise, of course, should be
as low as technically feasible.

TI)The optimal estimator should not be worse than a null estimator
(one that predicts only zeroes), whose error is always 100%.
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Finally, the results listed in 1able 3.9 below show the sensitivity
of the relative accuracies of the estimated coefficients to the choice
of power spectrum model. The degree variances <, of subroutine NVAR,
described in paragraph 3.1 and in appendix B , have been replaced by those
obtained according to a two-term model of the form described by expression
(3.4), but with the following parameters' values:

A =100, B=20, Al =18.3906 , A2 = 658.6132 , S1 = 09943667 ,
S2 = 0.508949 .

These values correspond to a model obtained by Jekeli ("2L"

model, Report No. 275, Dept. of Geodetic Science, The Ohio State Unjversity,
Columbus, Ohio, 1978). The values in the first column are the same as

in Table 3.6. those in the second column correspond to the "2L" spectrum.

As in the case of Tables 3.6 to 3.8, these values correspond to the zonals
only.

Table 3.9

Relative Accuracies with Two Different Spectral Models

n As in Table 2.6 (%) Jekeli's “"2L" (%)
2 .54171 x 10! .5587G x 10-!
20 .74292 x 1072 .74343 x 1072
40 45779 " .36486
60 .10564 x 10~! .87091 "
80 .30675 " .20738 x 10-%

100 .10694 .72841 u

120 .51907 .382197

140 2.9581 2.1529

160 1.1748 .86360

180 1.4831 1.1068

200 2.5173 1.9143

220 5.2505 4.0815

240 13.900 11.106

260 53.941 46.794

280 86.313 82.380

300 70.181 65.245

320 76.689 73.150

330 76.327 79.894

The ¢34 up to n =NM = 20 are the same for both columns (subrou-
time MODEL in appendix B). Clearly, while the change in spectrum does make
a difference, the changes have little influence on the calculated accuracies.
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3.4 Accuracies of Different Harmonics of the Same Degree ’

Having come across the argument that SST data collected in a polar
orbit should be most sensitive to the zonals, as all their variation occurs
in the N-S direction, and least sensitive to the sectorials, with the tesserals
falling somewhere in between, and the difference from zonals to sectorials
being quite large, the author included in the main program statements \
to 1ist the accuracies for the cosine terms (@ = 0) of all potential coef- :
ficients of degree 2 < n<¢ 40 . The accuracies for n = 30 are listed :
below. The mission parameters are those for Table 3.1, and the principle
used is that of least squares adjustment. The accuracies correspond to
dimensionless, scaled coefficients (par. 2.3).

Table 2.10

Accuracies of potential coefficients of degree n = 30

m oeC am }
0 2.08 x 10713
1 1.46 "

2 1.50 "

3 1.51 "

4 1.53 "

5 1.58 "

6 1.61 "

7 1.68 "

8 1.71 "

9 1.78 " _
10 1.83 " i
11 1.90 "

12 1.97 "
13 2.03 "
14 2.11 "
15 2.17 "
16 2.27 "
17 2.33 "
18 2.44 "
19 2.49 "
20 2.62 "
21 2.67 "
22 2.72 !
23 2.87 "
24 3.05 "
25 3.09 "
26 3.31 "
27 3.35 "
28 3.60 "
29 3.68 "
30 2.82 "

The values above are typical of those listed for other degrees in
the interval 2 s n < 40 . While there are fluctuations, the sensitivity
of the adjustment to the various harmonic terms of degree n = 30 does
not change very much. 63




4. Validity of the Results

The numerical results of the previous sectior have been obtained
under the simplifying assumptions of paragraph 2.1. Among those assumptions,
numbers (1) to (4) define an orbital geometry more regular than what
can be found in reality, and assumption (11) disregards all sources of
error other than SST data errors. Of the remaining ones, (9) and (10)
have been explained already in the first section of this report, while
(5) to (8) merely describe what an ideally successful mission would produce
in terms of data. Assumption (3) defines an idealized Earth rotation,
where there are no fluctuations in the angular velocity & due to such
causes as tidal friction, redistribution of atmospheric masses, lack
of rigidity of the Earth, etc., and ro changes in the inertial orientation
af the spin axis due to precession-nutation and polar wandering. Changes
in 7 are of two kinds: short term, due to solid Earth-atmosphere inter-
action, etc.altogether probably too small to matter, and secular, due
to tidal effects caused by the Sun and the Moon, also very small and
quite predictable from long records of observations. Polar motion is
also well modelled from very long series of observations. The main effect
of changes in Earth rotation is in the calculation of the satellites'
orbits, as orbital errors affect also the accuracy of the results. Because
of the existence of good models, this effect is probably negligible in
the present context. So this section is going to consider only the conse-
quences of assumptions (1), (2), {4), and {11) on the credibility of
the results of the error analysis. The basic argument is that the actual
data set, with its complex three-dimensional distribution, can be reduced
or transformed into another with the geometry implied by the assumptions
and with the same information content as the original. The analysis
of this transformed data set can be done, then, in the manner explained
in section 2, the accuracy of the estimated coefficients being much the
same as that shown in the previous section.

4.1 The Geometry of the Real Orbit

The departure of the gravitational field from that of a central
point masscauses the orbit to take a shape that is not exactly circular,
however carefully the satellites are manouvered into it. Most of the
departure from cicularity is due to the part of the anomalous field that
is already known from the study of terrestrial and spacecraft data, and
the major portion of this known departure is caused by the second zonal,
which is almost three orders of magnitude larger than any other harmonic.
This zonal represents most of the effect of the Earth's equatorial bulge
on the geopotential. The result is a wavy motion of the satellites,
which alternatively run above and below the meansphere of radius R (average
orbital radius), gain or loose ground in the along-track direction with
respect to a perfectly uniform circular motion, and also move with respect
to each other because of their different positions along the (more or
less) common orbit, so the orientation of the line of sight is not always
perpendicular to the radial direction, but fluctuates about, and there are
also variations in the intersatellite distance. The non-zonal terms
of the harmonic expansion introduce further irregularities, particularly
in the across-track direction, so the orbit does not lie in any given
plane except approximately. The effect of the non-zonals is, however,
of the order of meters, while that of the second zonal amounts to several
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kilometers. The discussion that follows suggests that errors of a few

meters have negligible consequence, so only the departures due to oblatness
need to be considered. If all measurements had been taken on a sphere of
radius R , the line of sight being always perpendicular to the radial direction,
and the separation between satellites constant, but the actual positions

of the spacecrafts had been displaced in latitude and longitude from the
ideal, periodical, regularly spaced pattern implied by the assumptions, one
could transform this "semi-perfect" set of observations into a "perfect"

set by interpolating horizontally the data from their actual positions to
their ideal ones. As far as the signal content is concerned, this inter-
polation can be exact, because the information is band-limited, in the sense
of paragraph 1.2, and the sampling is very dense. That such interpolation,

to be exact, would probably require the use of all data values to create each
interpolated value 1is of no consequence here, as this discussion is concerned
only with the the existence of valid transformation procedures, regardless of
whether they are practical or not. The practical aspects of the matter

are left for section 5. The only problem would be that the interpolated

noise would not be exactly uncorrelated and of constant variance, its
departure from those ideal qualities depending on how much the true
groundtrack departs from the ideal one. Here one can only assume that,

if this departure is not too large, neither would be the change in the

nature of the noise too large. At this stage of the argument it will

be assumed that the actual positions of the satellites can be known with
negligible errors from orbital calculations, the effect of orbital error
being treated later on in paragraph 4.3, where assumption (11) is discussed.
As explained there, the model adopted for the Tine of sight velocity 1
implies that such errors can have a very smal) effect on the estimated

coefficients as long as they do not exceed a few meters, an accuracy

achievable with existina ~rbit determination techniques.

The transformation of the actual set of observations into a set
of pseudo-observations lying on the mean sphere along the ideal orbit
can be carried out in two steps:

(a) a vertical reduction of the original observations to the mean sphere,

where an intermediate set consisting of pseudo-obs. with the following

characteristics is created: the "midpoint" between "satellites" lies directly

below the true midpoint, the "line of sight" is oriented North-South
perpendicular to the radial direction, the "satellites" are at the

same distance from each other in all the pseudo obs; in other words:

the intermediate pseudo obs. are identical to ideal observations in every-

thing except their arrangement on the sphere;

(b) a horizontal interpolation using the intermediate data set to form
the final set of pseudo-obs. at regularly spaced points along the ideal
orbit. .

As already explained, the horizontal interpolation can be carried
out, in principle, exactly, because of the band-limited nature of the
gravitational signal. The main problem, therefore, is the vertical reduction
or step (a). This step involves a downward or upward continuation of
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the signal, depending .n where the satellites happen to be with respect
to the sphere, and a correction for the change in their relative position,
which results in a variable intersatellite distance and line of sight
direction. Both the continuation and this correction can be considered
together, as an overall operation.

4.2 Vertical Reduction to the Mean Sphere

The discussion can be simplified by considering observations of
Yine of sight relative acceleration, a,, , rather than line of sight
velocity, vy, . The signal being band-limited, it is possible to dif-
ferentiate the velocity exactly by computing the Fourier coefficients.
of the data over the whole mission (assuming the orbit to be nearly period-
ical), and using these coefficients to calculate the acceleration, since
the acceleration coefficients are related to the velocity ones by the
simple relationship

a a

n n
n = nw bn
(accel.) (veloc).

The Ny - vector of acceleration values a can be obtained, formally,
by mul%ip]ying the Np - vector of velocity values by a prNp "dif-
ferentiator" matrix g :

a =S 912 (4.1)

The model for the accelerations is, therefore,

a=SAc (4.2)

and the "observed" accelerations, which consist of differentiated signal
and noise, are

g(obs) =S !12(0b5) =SAc+Sn (4.3)

The least squares adjustment estimator is, therefore (paragraph (2.8))
¢ = (AT sT(0")"*s A)~'AT sT (0')"%s ¥12 (obs) (4.4)

where D' is the variance-covariance matrix of the “"differentiated"
noise

D' = € {(S0)(S0)'} =SE {m'}s
=5DS (4.5)
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Replacing (4.5) in (4.4)
= (ATsT(stTo sts Ay asT (s%)To 1sts %12 (obs)
(ATD72A)™ AD™ Taz(gpe) (4.6)

~

where ngtu indicates "The pseudo inverse of S " (StSA = A) , so the

least squares adjustment estimates of the coefficients based on the dif-
ferentiated data are identical to those obtained from the Jata directly.

The errors in the estimates being the same, any conclusicns derived for
accelerations are identical to the corresponding conclusions for velocities.
The same principle a?p11es to least squar$s collocation, as it can be

seen by replacing (ATST(D')-1SA) with (A'ST(D')-!SA + C-!) in the reasoning.

Figure 4.1 below shows the true position of the sateilites, S, and
S, , and their "pseudo-positions" on the mean sphere S{ and S3 (the
"prima" symbols indicate the counterparts of real elements on the mean
sphere). The relative positions shown have been chosen for pure convenience
of representation: the satellites can be both above, both below, or
on either side of the surface of the sphere,

Figure 4.1: True Positions in Orbit and
Pseudo-Positions on the Mean Sphere
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Let . -

26 ar(r‘9¢"A') - fo ar(r.¢,A)
§a,(r',et") - o ay(r,e,0) (4.7)
A a,(r'se'xt) - Ao & (r.0.1)

5a(Q',Q) = alQ") - a(Q) =

(g

be the variation in inertial acceleration between points Q and Q'
where the r and ¢ components have been modified by the removal of
a contribution from the zonals (paragraph 1.3). As it happens, this
contribution comes only into a, and a, , a, is free from this zero
frequency problem. Let J A

€ = e, - €12
be the difference between the unit vector in the direction of the actual
Tine of sight, e,, , and the unit vector e;, for the South-North per-
pendicular to the radial direction at the "pseudo-midpoint" P' . The
difference between the true line of sight value and the corresponding
"pseudo-observation" on the sphere is then

8§12 = ais - a2 :
|T ~ ) ~ ' T A ~

= e1,{(8(S1) - &(S3)) - e12(8(S1) - a(S2))

= el} 63(51,83) - (eis - €)T 6a(S,, S3)

= e32(33(S1, S4 ) - 6a(S1, S2)) + ¢ 83(S1, S2) (4.8)

Let dpax be the maximum possible distance between a satellite and the
corresponding "pseudo-satellite” position on the sphere. The value of

dmax will depend on the radial and horizontal components of the separation
vector, but one could well argue that a purely radial separation should
have much the same effect as the total displacement if both have the

same size, because the lateral fluctuations are nearly one order of magni-
tude smaller than the radial one (appendix A). Consider the first term

of (4.8). The contribution of the nth harmonic to this term is

eil (één(si, S3) - 6én (S1, S2))

where

63,051, 52) = {a4n(S1) 9 §84n (S1s S2) (4.9)

Séxn (Sl’ SZ)
dpn 5 d4n éxg being the sum of all terms of degree n in the expansions

of ar , 4, ,"a, (expressions (1.8, a-c)). The variation of ap, with
radial distance is

dn(s1) £Eh 4 (5) :c‘”l }aa‘m (3, S2)

5An(51) A

n+2
)

8 (Rods)) = 3,0 (R + hyo,0) = (1= (BR™2) dpn(R,0.0) (4.10)
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and similarly for a,, , and &, . As both satellites follow the same ;
orbit with a separation that is small compared to the wavr ength of the :
second zonal and its disturbances, one can regard them, i - first approx-

imation, as moving up and down simultaneously, so their h..ghts are the

same. In such case

83, (S8s $1) - 63, (51, S2) = (1 - (™) 63, (54, 4)
and similarly for the other components of §n s SO

83,(515 $4) - 82,(S1, S2) = (1 - (") ca, (i, 53 (4.11)

e

The magnitude of the first term of (4.8) is, therefore,
- I R 2 i ~ 3 1
Q{I(Gén(sf' $2) - 8a, (51, S2)) < [lel2]] (1- (R:h-)m ) [18a (1, S

A
R sk

; As |lel2]] =1 and |[83,(Si, S3 )] < |16apl] ey (Where [16a llp. is
i the maximum size of the magnitude of a, on tha*mean sphere), and He seq-
ment 57 S' has constant length, it follows that

eiT(63 (51 S3)-83,(S1s S2)) < (1= ()™ ™) 1163, (51, S|y (4:12)

The difference between 63(51, S,) and 6@(5{,55) is not very large, so
the second term in (4.8) is, approximately,

el 63(Sy, S2) = ¢ 6a(S{, S3)

The maximum value is

T 2 ] ' 2
e' a(51, $3) € [lell g, 11831 ] pay
The magnitude of |||y is, to a first approximation (disregarding
the curvature of the Ear%ﬁ), function of the relative displacement of the
satellites:

S YArip + Bpfp + ATi; (4.13)

where Ary, is radial, Ap;, along the line of sight, and At;.

across<track. According to Appendix A , the largest displacements due to the an-
amalous field are: Apiamax = 0.7 km, Arispayx = 0.7 km, ATizpaye=0.4km, Ar _ =
3.9 km (vertical displacement of each satellite). Adding 1 ke to 801 2, 72
Orizmax  and ATiamay » to introduce an extra error margin, the value

of T?Ellmax according to (4.13) is

llellmax £ 0.009
The contribution of the nth harmonic to the second term of (4.8), therefore,
is

¢ 68, (S, 53) £ 0.009 [[63, || (4.14)

max
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From (4.8), (4.12), and (4.14) one gets, finally,

sa2 < [(1 - (™) + 0,009 loal] (4.15)
as an upper bound for 6312 . The maximum value of h is dpzy » S
explained earlier. This maximum absolute displacement of any o¥ the
two satellites is

dmax s /(Armax Hhria g, )" T ORIz ¥ Arfzmax (4.16)
o (4160 with W v B wccor I o a7 0084 0 eact)

dmax = 4.7 km
aﬁd the upper bound for &3,, becomes

Sa12, < [1.009 - (0.99928087)™ %) 163, |1

=, 1163, | pax (4.17)

This expression 1limits the difference between the actua) line of sight
acceleration along the non-circular orbit, and the corresponding pseudo-
observation on the sphere. This is the largest possible value (if the
argument behind (4.17) can be accepted) of the correction that has to

be introduced in order to transform the original data set into the corres-
ponding set of "accelerations" on the mean sphere. The factor p, is

p, = [1:009 + (0.99928087)""*] (4.18)

If no correction is applied to the accelerations, and they are analyzed
as if they were already on the mean sphere and on the ideal orbit, the
error in the estimated coefficients will have two components: (1) that
due to the data error, which has been listed in the previous section;
(2) the error due to the fact that the uncorrected accelerations are
not on the ideal orbit. As both errors have quite independent sources,
the total rms error per degree is

O'En = [05;(1) + (7(5,2‘(2)]i (4.19)

where cEn (1

& corresponds to the first, and oE,
of error. The r

elative error per coefficient is,

Pn(T) © %:{%:—IB; =((9%2_{_L))2 + (—g‘:‘-&))z)}:(orz\(l) + O;(z))é (4.20)

where o 81 is the propagated noise listed in Tables 3.1 or 3.2 of section
3. If tn 3n1y difference between the real and the ideal orbits were
an increase in radial distance, orexpansion, so R - R' = d x Were constant,

then it would follow from (4.8), (4.10), and (4.17) that

(2% to the second source
then
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Gal)_n = pn alzn (421) \
- -1 N R n+2 - i
as e12 = €32 and d8ayp(Sy, S2) = (TTTT-' ) §a1.0(S1, S3) at all i
points along the orbit, so *dmax ;
i
= %n(2) - |53 ! -1 ;

°n(®) T Tonp [8arzp | payi 188 H "nay = Py (4.22)

In reality &a:»p becomes modulated by the changes in di<tance between
true and ideal orbit, as this distance cannot be constant. Consequently
expression (4.21) is no longer true, but merely an approximation to a
very complicated reiationship. The error should be less than with a
constant radial increase dpax at almest every point, so perhaps the
use of the right hand side of (4.22) as an upper bound for on(:) is

a realistic choice: on(2) < pn . )

n %et the coeffigie ts estimated from t?e or1gln 1 set of accelerations

a12(°) be called € (%) , and Tet alz = a2 + 6317 (9) be the

0r1g1na1 acce1?r?t1ons correc?e? with values 6a12(°) of 8a,. computed :

using the L§t be th? Soeff1c1ents obtained f:omhthe

analysis of the at , and let 81, be a new st1mate of ualg (:

based on the COt 1) Correcting the or1g1? } ai: ) 2 ? the ?1~ *
ai,

)\.,

and then analyzwng again, one obtains Chm If 4,,'%) = +561§)is 1
closer to the transformed set of pseudo-obs 612 %) + sa;, (tha% 35 the

subject of this paragrgphz than the %) s then Cpp ) should

be an 1mprovemenz Sn ? 1), 6a.,(2) on 5612 1), so on $ k Ln,ﬁ

Let C% M %W( ;), etc. be the outcome of %Wb iterations of this

ana]ys1s correction-analysis Dfﬂfed” As M+ Ca may conv0f ?

to some 1imit Cfy and “op(z)} go "o%(2) - where" Dn(z < pp é

beca s? CLY°° is better than C As ) 1s the ratio of 064&;.p ?M 1 -
ai2n , 1? the relative error in the M 1) , and thus in the dalz ]

is p 3 ) , the error ratio for the c ryected 8, M = 5,,000

821, ( d thus for the Cfg' must bell
(M) 2 r 2 (M-1)43
Pn < (pn(l) * pp P;(T) )
or
10 2(p2 (M-2)
n < Pn(1) + Pn(pn p:(T) + 05(1)) (4.23)
0
2{M) 2 2(M-2) 2 3 2(“ 3) 2 2
no SS M T fa(r) $% P T Y oh() t 9 Pa) * fng) .
¥
where q. = p; . Repeating this reasoning backwards M- 1 times: :
2(M) (M-1) \ M-2) 2
e R I TO T U D I IR
<oV, M-1) (V 2)
-qn n(l)[q + .. 4q +1] i

~(M) (M 1)

Uthe notse Sn in the corrected accelerations ait) = 3 12
is always the same, so on{1) is independent of M .
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o _Lim (M) . onz) | - 2ph i
“n(T) T Me= (1) F t‘r‘f"af;)ﬁ e ERL S

Examining (4.18) one can see that for n = 331 (top of the band), is

P = 0.22

As both p, and Dn(l fall with decreasing n , far all n in the band is

pn(T)(M) < pBal(T)(M) and pp < P35y <1

Therefore it is true that

d:(T) < TngLé%T? (4.25)

4
The values of pR(T) and of OnkT; have been Tisted below, together with
the corresponding values of the error Pn(1 given in Table 3.2 and
derived under the simplifying assumptions. "The closeness between the
"true" and the "ideal" relative errors is clear. Moreover, the it?£3tive
procedure appears to converge very quickly, as pﬁ(T) and on(T)
agree to three decimal places.

o (4)
n Dn(l) x 100 Dn(T) x 100 Dn(-r) x 100
10 0.0063 0.0063 0.0063
100 0.0686 0.0688 0.0689
150 2.8401 2.8582 2.8583
200 7.9146 7.9982 7.9987
250 21.620 21.9581 21.9583
300 65.941 67.3613 67.3614
331 82.269 84,3747 84.3748

It must be remembered that, on the one hand, the reasoning leading to
(4.25) is by no means rigorous, while,on the other hand, the assumptions
made in it have been mostly on the conservative side. [t appears that
a series of iterations as described here should transform the original
set of observations into a set of "accelerations" on the ideal orbit,

in such way that the coefficients estimated from these transformed set
would have much the same accuracies as those listed in section 3 and
derived under the simplifying assumptions of paragraph 2.1. In this
sense, the resultsof section 3 are supported by those above; they

may very well indicate the maximum amount of information on the geopotential
that can be extracted by linear estimation techniques from a real set

of SST data.
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4.3 The Effect of Errors in the Calculated Orbits

To apply the corrections SaliM) to the &, () one must know
the position of the two satellites, S, and S . In the previous
paragraph it was assumad that this knowledge was exact. In reality ,
however, the gravity field model used to compute the orbits, the coordin-
ates assigned to the tracking stations, and the tracking d~*a used to
calculate the orbits,all contain errors, so there is a discrepancy between
computed and true orbits. With present tracking, coordinates, and models,
the errors in the calculated orbits are not Tikely tc excced a few meters.
The ?igect effect of these errors Zs an agdi%iona1 error in the corrections
53,, M) , as the accelerations a,, ) + Y- I are "dropped" frpw
their true positions to the calculated ones. The change in éalgﬁm
for a displacement of As meters is likely to have a size comparable
to the effect of a purely vertical displacement of the same macgnitude.
From (4.11) follows that such change is

p6a, ™ = (1 ("D, (4.26)

or, to a very good first approximation
1 S ~ |
Aalzr(, ) =-(n + 2) é|:z' 531253‘)
~ (M
= B, (as) aalz( ) (4.27)

Even for n = 331 , at the very top of the band, the relative errsr
Ry, caused by an orbital error of 10 m is insignificant: 8331(*0 =

5x 10-5 This error decreases with n , as indicated by (4.27), so it

is smallest at n =0 . However, the size of the zero harmonic is so

large that its net change over 10 m amounts to some

3 mgal . If no correction term for this and the other even zonals is
introduced in the definition of the derivative of the line of sight velocity,
as suggested in section 1 , then the effect of a vertical displacement

is
~ . GM
8o (AS) &alz(T) =-2 s1ni%- 5% = AS (4.28)

or 0.138 mgal every 10 m . Because the orbital error is not constant,
this change in the zero harmonic constribution is modulated by the complex
shape of the error, so the power of the zero harmonic change spills over
the whole spectrum corrupting all the estimated coefficients. As the
power associated with n > 100 . in mgal, is well below 0.138

mgal at satellite altitude, this can have serious consequences. In the
model adopted here for a;, the zero harmonic has been excluded, so

only the errors due to the other terms in the expansion, all of them
quite negligible, are present.
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5. Data Processing

The objective of this section is to include some thoughts on how to
process the masses of information collected from a SST experiment into
a global geopotential model of very fine resolution. This problem goes
beyond the scope of this study, but some further elaboration of concepts
introduced in previous sections may help clarify this difficult subject,
and perhaps point out directions for future research.

5.1 An Iterative Approach

The argument used in the previous section to substantiate the num-
erical results of section 3 suggests that a model may be obtained through
successive approximations. To be able to use the sort of "analysis-correc-
tion-analysis” approach hinted at in that arqument, it is necessary to
have certain regularities in the data that, though physically possible,
may not occur in practice. On practical grounds one can question two
assumptions made implicitly in last section: that the denartures
from perfectly circular orbits were due to the anomalous gravity field alone,
and that the data were sampled uninterruptedly at constant intervals during
the whole mission, all measurement errors having the same standard deviation.

Even when the compensating mechanism could eliminate ali non-gravi-
tational forces, and when gravitational fields (other than the Earth's)
and the effect of the body-tide could be calculated exactly from existing
models and thus discounted, the relative positions of the satellites are
not going to vary as predicted from the action of the anomalous field
alone. The reason for this is that it is impossible to determine and
control exactly the state of each satellite at "injection" time, to make
sure that both move along the same orbit, and that such orbit is as close
to circular as the field would allow. As aconsequence,besides the relative
motion caused by the field there will be a "drift" due to incorrect
initial conditions. This drift will follow a more or less arbitrary dir-
ection, resulting in the spacecrafts moving towards or away from each
other until their separation and the direction of the line of sight change
so much that observations taken at different times cannot be described
sufficiently well by equations that assume a fixed distance and angle. Since
the total relative motion can be calculated from the reference orbits
with an accuracy of a few meters, the change in relative configuration
with time should soon become apparent. This change should have a more
or less periodic component due to the irregular gravitational field.and
a trend due to previous orbital manouvers' errors. While these errors
cannot be determined accurately, the drift itself increases with time
until jt becomes easy to estimate. The fact that the satellites are
tracking each other continuously, in addition to being tracked from ter-
restrial stations. should help to obtain a good estimate of the drift
and the drift-rate. When the drift reaches a maximum allowed value, the
controlling rockets of either spacecraft can be fired briefly to reverse
the drifting motion, so the drift begins to decrease (the reversal need
not be exact). This scheme is a "dead zune" control policy where correcting
action is applied only when a certain limit is about to be exceeded. As
the purpose is to reverse the drift rate rather than to eliminate the
drift altogether, the correction need not be particulary drastic. Even
so, the use of such a scheme must increase the amount of fuel required
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during the mission, and thus the overall cost. Of course, some cor-
recting maneuvers of the sort described here will have to take place from
time to time, to stop the two spacecraft from separating too much {so

the radar beam does not cut too deeply inside the atmosphere, or is inter-
cepted by the curvature of the Farth itself, at a separation of abocut 2700
km) or from becoming too close, as the shorter their distance, *he weaker
the signal and the less accurate the results, as shown in section 3, Tahles
3.6, 3.7, and 3.8. The question is how often such maneuvers will take
place,not whether they shall be needed at all. Compensatory changes in

the design of the mission could allow the use of “cead zone" control to
maintain relative orientation without raising the cost too much. It may

be possible to choose a higher orbit. where less fuel for drag compen-
sation is needed (the decrease in fuel requirement with height should

be quite fast) so the balance can be used for maneuvering. The length

of the mission could be increased, the accuracy of the data improved,

or both, to compensate for the weaker signal at greater height. A1l of
these factore, some contradictory, and others,as well, can onily be bal-
anced properiy in a thorough mission design study incorporating the demands
of data processing among the main guestions to be censidered. Given the
magnitude of such demands. some regard for them appears natural.

Another assumption made in section 4 that may not be fulfilled
in practice is the existence of urinterrupted series of measurements lasting
the whole mission. Breaks will occur in the data, some much too large
to be ignored or "patched up" by interpolation from surrounding data.
There may be fluctuations, as well, inthequality of those measurements
due to problems in the satellites themselves, or in the surrounding medium,
as in the case of severe ionospheric perturbations. So the stream of
data will not by perfectly uniform in quality (variations in the standard
deviation of the errors) or unbroken. These departures from the assump-
tions, if severe enough, would make a close application of the ideas presented
in earlier sections quite impossible. One could begin, as an alternative,
by differentiating numerically the data to obtain line of sight accelerations.
Supposing that the model of section 1 is correct, these accelerations
on a sphere have the form

1 N
al:(RQ '3'9 \) = Z z
2=0 n=0 m=0

where, according to expression (2.9) and (2.15,a-b)

\"1 " (COS, A \
Cnm gnm($ ) ts*in[ m (51,

~13

Gum(0) = (n+ 1) [T (5" - ) + [ (0" + )] siny +

d ' Y T ' v w
T [Cople" = ) =L+ (00 + <] cos
and
p _ GM a M p
C%m Y (77) C%m

Functions that can be expanded in series of the type of (5.1), which
includes the ordinary spherical harmonic expansion, can be analyzed to
obtain the values of the C3. by very efficient methods resembling
numerical quadratures. The gerivation and implementation of optimal methods
that minimize the estimation error in the presence of unhomogenecus and

and correlated noise have been discussed by Colombo (1981, paragraphs 2.9
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and 2.12). While the procedures presented by this author in that work have
been derived for the case

{i.e., spherical harmonics) the extension to the more general case of

(5.1) is quite direct. The only requirement ic that the data occupy the
noages of a regular ¢rid where the separation between meridians is constant.
This can be done by interpolating the aifferentiated velecities on those
nodes from surrounding data points, while also determining the correlations
and standard deviations of the interpolated values fromthose of the obser-
vations, as these ure needed to set up the optimal estimator. I[f no reliable
interpolation is possible on some node, because of large data breaks in

the vicinity, a value of zero with a “"standard deviation" ecual to the

rms of the line of sight acceleration could be used instead.

By setting up an appropriate control mechanism to maintain the relative
configuration of the satellites within sufficiently close limits, and
by using the interpolated accelerations as pointed out above, the interative
scheme could procead basically along the lines of section 4, except that
the data would be analyzed as in Colombo (1981), rather than as in section
2. If such a control scheme proves to be feasible, the next important
question is how to calculate the corrections &a;, of expression (4.8)
from the Cfyp estimated in the previous iteration, to refine the pseudo-
observations on the mean sphere. Because of the irregular shape of the
orbit, calculation of these corrections using exact relationships is
too laborious to be practical, even with very powerful computers. The
main reason is the rumber of operations needed to obtain every <da,: ,
which is proportional to the number of coefficients (some 11 x 10* <<
N = 331). This matter needs thorough investigation, but the answer should
involve some sort of approximation, to reduce the computer burden. One
possibility that may be worth exploring is as follows: consider a spherical
shell extending 5 km above and 5 km below the mean orbital sphere. The
whole orbit, according to Appendix A, should 1ie within this shell. Imagine
the shell subdivided according to a regular grid, equal angular for instance,
where the blocks are y’ x y° 1in size, so the shell is partitioned

into cells each y® x y% x 10 km in volume (the sizeof y should be
decided by detailed study). The vertices of the cells are arranged in
equal angular fashion, so one can compute the three inertial acceleration
components at every vertex according to expressions (1.8, a-c) very effic-
jently using, for example, algorithms 1ijke those described by Colombo
(1981). To calculate the correction &8a,, onemust know the value of
d,. jn the actual orbit and in the ideal orbit , and for that the three
accelerations at points S; and S. , St and S} (in Fig. 4.1) are
needed. These accelerations can be computed from their values at the
vertices of the cell containing those points by some interpolatory pro-
cedure, which snould be a great deal easier than an exact calculation.

The type of approximate calculation of the acceleration components
Jjust described may be used, as well, to obtain the forcing function due
to gravitation needed to integrate numerically satellite orbits with a
very high degree and order field model, Tike the one whose determination
is being discussed heire. Such calculations may be necessary, for example,
to reduce the orbital errors at each step of the iterative modelling pro-
cedure.
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5.2 Qther Methods

Instead of converting the data into pseudoobservations on the mean
sphere by successive iterations, this could be done directly by estimating
the pseudoobs. in one step from neighbouring data points. This means
carrying out a series of local reductions that finally covers the whole
sphere with a regular grid of estimated values. These values should cor-
respond to a variable that can be described by an expansion of the type
of (5.1), and which does not have to be the Tine of sight acceleration
of equation (2.24). These local reductions can be done -n many different
ways. One possibility is to use least squares colloca‘ion in a local
manner. A probiem with local solutions by collocatinn is thatthe signal
in SST measurements tends to be toc strongly correlated over considerable
distances, and this causes the variance-covariance matrix to be too il1-
conditioned to be inverted in a dependable way. According to R. Rumme!l
{private communication) a minimum separation of about 100 km between data
points is necessary for stable inversion. As the actual points are likely
to be spaced some 30 km apart along-track (with a sampling interval of
4 s ) and by less than that across-track, (because the separation between
adjacent passes should be of only a few kilometers by the end of a six-
month's mission) some kind of paring, or decimation, of the data will
be needed to achieve the larger spacing. This could be done in the first
of two steps: beginning with decimated data, a set of pseudoobservations
could be obtained without stability problems, and a first estimate of
the harmonic coefficients could be made from this set. In the second
step, all the data could be used after substracting fromthem their nominal
values according to the model produced in step one, which could have high
degree terms already. Such residuals are going to be less correlated
than the original measurents, because much of their Tow frequency content
would have been removed, so the inversion of their variance-covariance
matrix may be stable in spite of the close spacing of the data points.

If no control of the relative alignment of the satellites takes place
and they are allowed to drift freely with respect to each other, the cor-
responding observation equations would lack the regular structure assumed
in section 2. In such a case the ideas for analysing the data discussed
in the previous paragraph are not applicable, and only non-iterative methods
1ike the one just outlined seem to offer any real hope.

Any method that first creates a regularly spaced set of pseudoob-
servations on the mean sphere and then analyses it efficiently to obtain
the potential coefficients requires two main things:

(a) a model for the data that is both practical and accurate. An
example of this may be the model adopted in sections 1 and 2, but this
idea needs further validation, as pointed out at the end of paragraph
1.3;

(b) an efficient and accurate way of reducing the measurements in
the actual orbit to pseudoobservaticrs on the mean sphere.

Both problems require more research to clarify them, and this clarifi-

cation may be absolutely necessary before developing an effective technique
for processing SST data.
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5.3 The Use of Local Solutions

As mentioned in the introduction, there have been studies of the
SST problem that have concentrated on purely local solutions that use
data taken from inside a relatively small neighborhood of the points
at the Earth's surface where certain quantitiess associated with the grav-
itational field are estimated. The advantage of the global approach is
that every value that is estimated is obtained from the processing of
all the data available, so it can be more accurate than a local solution
based only on part of the data. : . Global solutions may be free from
the numerical instabilities that tend to be associated with local solutions.
Global solutions have also some important limitations. A spherical harmon-
ics model, for instance, must be truncated at some finite degree for
practical reasons and this limits the size of the finest detail that
the model can represent. Even if the number of coefficients is not a
problem, some very fine but also quite strong features that may be sensed
by the satelliite pair, such as anomalijes along ocean ridges and trenches,
mountain ranges, etc., are likely to be smoothed out by an optimal global
estimation procedure because, on a global scale, they are similar to
measurement noise. Such small but marked features may be recovered by
using local estimation methods, applied in the knowledge that sharp field
variations may occur in certain areas. These methods may use residual
SST data, with respect to the global solution, to ensure numerical sta-
bility and the removal of trends of non-local nature.

Local modelling should be regarded, therefore, as complementary to
global analysis, because its careful application in selected areas may
push the level of resolution to the very limits allowed by the information
contained in SST data. Local solutions may permit also the combination
of SST data with terrestrial measurements of gravity, with satellite aitim-
etry over the oceans, and with knowledgeof the geological structures
that may be responsible for some of the high frequency content of the
signal, all of which may be difficult to incorporate into a alobal solution.

6. Conclusions

According to the theory given in sections 1 and 2 , assuming that
the power spectrum of the geopotential is as described in paragraph 3.1,
and that the reasoning of section 4 is valid, the results presented in
section 3 can be summarized as follows: with two satellites in nearly
the same circular, polar orbit,at a height of 160 km, 300 km apart, with
a tracking accuracy of v2Z x 10-° m s~!, a sampling period of 4 s , an
averaging period of 4 s , and a mission length of six months, the coef-
ficientsof the spherical harmonic expansion of the potential up to
degree n = 331, may be estimated to the following entent:

(1) the relative accuracy of the potential coefficients could be
better than 1% for nr < 130 , than 10% for n < 210 , and than 50% for
n s 270 , using least squares collocation. With least squares adjustment,
the results may be the same up to n = 200 , and for higher degrees
collocation may work better.
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(2) the accuracy of the geoid undulation implied by the coefficients
could pe better than 0.05 mm rms for wavelengths of between 3000 km and
40030 km, and better than 10 cm rms in the band between 140 km and 3000 km.

The method of analysis of section 2 can be used for studying
missions where the orbital plane is oblique to the equator. This would
require some changes in the programs listed in Appendix B , subroutine
ONEREV in particular, because those are written for the case of polar
orbits only. As they are, they can be used tc carry out an analysis
of the magnitude reported here 1in any modern computer wi.h some 1.5 megabytes
of core. If the highest degree studied is N = 331 , the central processor
unit time required is of the order of one hour. The effect on the results
of changes in some of the mission parameters can be studied, in the case
of least squares adjustment, using the results of section 3 and the simple
formulas of paragraph 2.13. Only potential coefficients and geoid undul-
ations' accuracies have been calculated; the accuracies of other quantities,
gravity anomalies, for example, can be obtained in a simple way from the
coefficients' accuracies, a complete listingof which, degree by dearee,
appears in Appendix C .

The method of section 3 allows for a spherical, rotating Earth, and
for data consisting of velocity averages. A number of simplifying assump-
tions listed in paragraph 2.1 are substantiated in sections 1 and 4, in
an attempt to show that the results listed in section 3 represent the
1imit of accuracy for a global model obtainable from real SST data if
the mission could be carried out without a single fault.

The accuracies listed being global, the undulation errors are likely
to be worse in some areas, perhaps where the field is strongly anomalous,
such as mid-ocean ridges, ocean trenches, mountain ranges, etc., and nec-
essarily better than average over the remainder of the planet. In those
areas where the model may perform poorly, local solutions (using the model i
as a reference field to calculate the residuals of satellite and terrestrial
data, and these residuals, in turn, as the observed values) may provide the
finer detail that a global technique alone cannot reveal.

As argued in section 5 , an iterative solution based on the ideas
of sections 2 and4may be used for the actual analysis of SST data. Alter-
natively, non-iterative methods could be developed for that purpose. All
such methods should have in common the fact that they rely on some conven- :
jent aproximation, as rigorous solutions such as those based on the “numericai”
or the "analytical" (i.e., celestial mechanics) approaches are virtually
impossible to implement, given the enormous number of harmonic coefficients
to be adjusted and of observations. Two essential tasks to be accomplished
through further research beforeasatisfactory technique can be found )
are, in all likelihood, the following: :

(a) validation of the model of the line of sight relative acceleration
used in sections 1 and 2 , or its reolacement by another that provides
a better approximation and is Just as tractable mathematically;

(b) development of a satisfactory procedure for reducing the SST
measurements to a set of pseudoobservations regularly distributed
over the mean orbital sphere, whose analysis can then be carried out with ]
efficient algorithms.
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Further work on how to model the SST signal should also help to
clarify the question of the influence of orbital errors on the estimated
quantities, influence that, according to the model adopted here, may be
small.
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Appendix A: Orbital Perturbations

A spacecraft orbiting a planet cannot follow a perfectly circular
orbit, as assumed in section 2, but must move in a more irregular course,
because of anomalies, or fluctuations. in the actual gravity field compared
to that of a central point mass. In the case ofthe Earth, most of this
effect is due to the attraction of the equatorial bulge. In the spherical
harmonic expansion of the anomalous field, the influence of this bulge
is represented mostly by the second zonal. This term is much larger than
all the others in the expansion, so most of the orbital perturbation is
due to this term alone. The following calculations will take into account
the second zonal in detail, and for the rest adisplacement of 200 m in
every direction will probably account well enough, provided no strong
rescnances occur, as assumed in paragraphs 2.1 and 2.6. For relative
] displacements between satellites, 400 m will be added to those caused
by the second zonal alone. Another assumption made here is that the force
corresponding to the second zonal is the same along the true orbit as
along the ideal, mean circular orbit. As the total displacement of such
craft is mostly vertical and of less than 5 km, it is easy to determine
that the force of the second zonal cannot change by more than 0.3%, so
it may be acceptable to regard it as having the same value along either
orbit. As the rotation of the Earth has no effect on the force of a purely
zonal field, it will be ignored. The motion in the orbital plane which
is perpendicular to the equator, is supposed to be periodical, which
is mathematically possible with the right initial conditions.

Consider the system of inertial coordinates with axes X and y ,
where ¥ coincides with the polar figure axis of the Earth, and X is
in the equator (figure A.1). The polar coordinates r and ¢' cor. spond
to a point moving along the orbit with an approximately uniform circular
motion represented by

9" = [wtlwopuLe 2n

The relationships between the components of the inertial acceleration
in the (x , y) and the (r , ¢') systems are

a, =a, cosy' - a¢ sing’ (A.1,a)
ay =a, sind' + a, c0so' (A.1,b)
or ax(t) = ar(t) coswt - a®(t) sinwt (A.2,a)
ay(t) = ar(t) sinwt + a¢(t) coswt (A.2,b)

From the definition of the unnormalized Legendre function introduced in
paragraph 2.2, the polar components of the acceleration are

ap(t) = -3 B2y oL ut) (A.3,a)
=3 a2 0, (F cos 2ut - )
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2,(t) (2)7 9, et

%@? a? J, sinZwt

where J2 = C20 (unnormalized)

Figure A.1: Acceleration and Position in the (x,y) and
(r1 ¢' = wt) Coordinate Systems.

The radial perturbation in the position of the satellite is

Ar(t) = ax(t) coswt + Ay(tkinwt

[ j dt" f a, (t") dt" + bxot + Axe] coswt

t t' .
dt' [ a, (t'; dt" + Ay,t + Ay,] sinut

+1 & 0 y

where AX ,Ax, etc.,are initial condjtions. As, Ar(t) is supposed to

(A.8)

be periodical with the right Ax, , Ax, . Ay , Ays , and ignoring a constant

tarm that merely ¢ hangas tha =iza nf tha orhit hy a faw Filometm =,

radgial displacement s

- W 2
ar(t) = 32 Ly, cos 2ut

rs
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according to (A.2,a-b), (A.3,a-b), and {A.4). Furthermore w = )
_ -39 a‘ . :
Ar(t) = —7-2- T J: cosdwt (A
and using the values
a = 6371 km
r = 6531 km
J, = 1.1 x 1073
(A.6) becomes
Ar{t) = =3.7 cos2wt [km] (A.
So the amplitude of the oscillation due to J, alone is
Aryax = 3.7 km (A.

The relative radial displacement between two satellites, assuming that the
change in their distance, and thus in ¥ , can be ignored, is

Ary,(t) = -3.7 (cos2wt - cos2(wt + y))

-3.7 x 2siny sin{20t + ¥)

for an intersatellite distance p = 300 km , so

Ar’leAx = 0-33 km (A.
The relative motion along the line of sight can be estimated by
integrating the relative velocity v;, . As this veiocity is nearly a
sinewave in time, of frequency 2w , the expression for the variation
in o s
B0 (t) = /2 WglmS)eos (ot + g) (A.

where B8 1is some phase angle of no consequence here. Replacing Viz2(rms)
with its total value according to Table 1.1, and adopting w = 1.2 x 10-3
rad s-! {(as r = 6531 km),

AOIQMAX = 0.3 km (A.

Because of the force is due to a zonal, the across-track displacement is

Atya(t) =0 for all t . (A
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The absolute along-track displacement of each satellite can be
obtained from an expression similar to (A.7), but it is not needed in
section 4. Finally., adding 200 m or 400 m, as the case may be, to account
fcr the rest of the anomalous field, the perturbations amount, approximately.

to
ArMAX = 3.7 + 0.2 = 3.9 km
Arizgay = 0.3+ (2 x0.2) =0.7 km
AO12MAX = 0.3+ (2x0,2) =0.7 km
= 0.4 km

AleMAX = 0.0 + (2 X 02)

A
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Appendix B: Computer Programs

This Appendix contains descriptions and 1istings of the main programs
and subroutines used for the error analysis whose theory is contained
in sections 1 and 2 and the results of which appear in section 3.

B.1 Main Program

Two main program versions wer? developed: the first one creates
the non-zero diagonal blocks of (A' D-* A) , stores them in unit 10 (a

tape file), creates the normal matrix's blocks by adding C-! or not,
depending on whether least squares collocation or least squares adjustment
is required, inverts the blocks, and uses the diagonal elements of the
inverses to calculate the error degree variances, the relative error per
degree, and the corresponding accuracy of the geoid undulation; the second
version of the main program does not create the normals but reads them

from tape (unit 10, once more) and then proceeds as before. The reason

for having two versions .is that, with the first, one creates the normals

and then carries out the error analysis using, say, least squares adjustment
theory; as the normals are stored without C-! , one can then use the
second program to add C-! to the stored matrix and then carry out the
analysis according to collocation without having to recompute unnecessarily
(AT D=1 A) , which is the most time-consuming part of the analysis.

{a) Full Version

This program both creates and inverts the diagonal blocks of the
normal required by the analysis. It call subroutines ONEREV, MATV, MODEL,
NVAR, and WRIT ;which are Tisted in this Appendix; it also calls the system-
provided subroutines ERRSET, SCLOK1, and RCLOK1, and the subroutines GGNOR
(from the single precision library produced by the International Mathematical
and Statistical Libraries Inc. (IMSL) company), and DSINV from the double
precision library of the IBM System/360 Scientific Subroutine Package.

The program contains a device against a possible underestimation
of the total execution time requested in the JOB card. The running time
is checked inside the loop where the diagonal blocks are created, so that
if this time is a few seconds below the assigned running time before a
new block is to be calculated, the run terminates in an orderly way. The
blocks created so far are left safely in unit 10, and the remaining ones
can be created in a later run where the minimum order of the blocks is
set to MMIN = (order of last (even, odd) pair of blocks completed previously
+ 1). The time for eventual premature exit is the value of parameter
YLIM in seconds, and should be smailer than the time declared in the JOB
card by at least 10 seconds + compile time. Blocks created in additional
runs should be stored in new tapes, which can be combined with the initial
one by means of a simple FORTRAN program to produce a tape with all
blocks in the required sequence (increasing order). The running time is
checked with the help of SCLOK1 (which sets the time counter to zero before
the main do Toop) and RCLOK1 that "reads" the time counter at every turn
in the loop.
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A1l calculations are carried out in double precision, with the excep-
tion of those related to subroutine GGNOR, that take place in single pre-
cision. For this reason all variables are declared REAL 8 , except array
TP which is REAL 4 .

The only COMMON statement is "P", through which the value cf the
total geoid undulation power POWNMX is communicated to the program from
subroutine NVAR, which defines the values ¢f the degree variances according
to the model explained in section 3.

The various arrays are somewhat overdimensioned for the needs of
the actual analysis, when N = 331 . The maximum degree N is defined
by the parameter NMAX which must be an odd number, for reasons given
in the description of subroutine ONEREV (if the value declared happens
to be even, by mistake, the program adds 1 to make it odd). The small
arrays (dimensioned 500) should be at least of dimension NMAXP = NMAX
+ 1 . As for the large arrays, their minimum dimensions should be

GPNMS :  (NMAX - MMIN + 2) x (NMAXP/2+1)
AE - 11;- x (NMAX + 2)2
O "

GPNMS contains the Fourier coefficients of the columns of the A matrix,
calculated by subroutine ONEREV, and AE, AQ contain the elements of the
normal matrix corresponding to a given order m and (n-m) even and
odd, respectively. Storage is in "upper-diagonal form" as required by
the inversion subroutine DSINV.

Subroutine ERRSET is used to suppress unwanted error messages due
to underflows in the calculations carried out by ONEREV.

The run parameters, including most of the mission parameters, are
assigned values between statements 15 and 31. Two other parameters, the
acceleration of gravity at ground level and the mean Earth radius, are
assigned values in statements 50 and 51. The meanings of the symbolic
names given to the parameters are explained in the comments of this section
of the program. Parameter IAC, for example, tells the program whether
a least squares adjustment or a least squares collocation error analysis
is requested. The main parameter values are listed by the program (statements
36 and 37 if pTotter output, as well as printer output, is desired) at
the beginning of the run and, together with some other important values,
saved at the start of the file created in unit 10, where the diagonal
blocks are also stored. The length of day is upposed to be 24 x 2600
seconds exactly.

Certain loadars initialize all array areas to zero before execution,
as in the case of the loader wused to run this program. Others set arrays
and registers not declared 1n the program to "indeterminate", or else
the values left in core by a previous job remain unchanged. In such cases
the program does not work unless additional DATA statements are written
to give all array elements an initial value of zero.
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The run begins with the computation of sin (%%), cos(’), and othsr
quanjities to be e@p]ainsd later, as well as the quantitieg- p sinp -
cos and cosp sin stored in arrays SPC and CPS, respectively
(statements 68 to 72). -¥his numbers are used later to form the Fourier
coefficients of the columns of A according to (2.13). Subroutines NVAR
and MODEL are called to set up the array of degree variances of the geopo-
tential, DVAR. The inverse of the variances of the scaled coefficients
(equations (2.15,a-b)) are stored in array CMi. The variances produced

by NVAR correspond to n > NMOD and are in the form of gravity anomaly
variances. They are converted to the inverse of geopotential variances

in statement 81. Allinformation relative to C~! is stored in CM1 and

in GMR.

The main loop begins at statement 91. Statements 92 through 95 check
that the running time allocated in the JOB card is not exceeded. The
elapsed time from the beginning of the main loop is printed at the beginning
of a new pass through the loop (statement 93). Each pass croates the
two diagonal blocks, one for n even, the other for n odd, corresponding
to order m =M . There are four non-zero blocks for each m , but those
corresponding to "sine" terms are identical to those for "cosine" terms
(expression (2.51) is independent of o ), so only one pair of blocks
is needed. Statements 97 through 105 calculate the factors

N Q-
45[ wa gaz‘(N+1)2 [(1‘ cos((pw+mQ)Aa) (pt)&o + mw-o) ¢

+ (1-COS((pw-mQ)Aa)(p%0 - 2—0-)"‘ ] |

FF(P) =

(see expression (2.51)) where WO 1is the fundamental angular frequency 1
for the whole mission (period TO = Ndaysx24x3600). The "af™ calculated
with ONEREV are too large by a factor of 2(N+1) , and this fact is accounted
for in the denominator above.

After ONEREV has been called, it returns the "Fourier coefficients"
nm _ cnm . Y o
ap hp [P sin p-%— cos-%— + (n+1) cosp 5 s1n-¥—]

where the h?? correspond to all [nm(¢ ) with m=M, n2M, in !
array GPNMS." These coefficients are then multiplied by each other and

scaled by the factor FF(P) in statements 107 through 137, to form the
element giifinm 1in AIJ according to (2.51). If a collocation analysis

is requested and AlJ corresponds to an element on the diagonal, the cor-
reironding term in C-! 1is added to AIJ in statement 136. Between 138

and 154 the calculated elements are stored in AE and AQ, the arrays containing :
the blocks for (n-m) even, and (n-m) odd, respectively, in upper diagonal '

form. The vectors PIVE and PIVQ are formed with the square roots of the ;
diagonal elements. From 155 to 157 the two blocks and relevant information

regarding their size are stored in unit 10, for further possible use.

From 158 to 165 the two blocks are "pivoted" according to

P even, _ pa even, -
Bm,a, lodd § = P71 Gng, fodd 1 P° (B.1)
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where P is a matr16 Rf "pivots", i.e., the square roots of the diagonal
elements of Gp o, {Sqq 1. PIVE and PIVO are used for pivoting AE and

AO , respect1ve1y 9he “pivoted" blocks are inverted in statements 173
and 174 (there is no "A0" block for M = N). Notice that the program has
been written in such a way that AE and AQ correspond to even and to odd
n-m , not n. As m is fixed during each pass of the main loop, the
result depends on n, so AE sometimes contains "even". and sometines
“odd" elements. and the reciprocal is true of AQ, depending on the value
of m.

The accuracy of the inverse is tested by the inversion subroutine
DSINV according to the tolerance 1imit defined in the main program (statement
172). 1f DSINV returns a value of zero in register IER1, the inversion
can be regarded as successful (free of serious numerical instability).
In addition to this test by DSINV, a further check has been written in
the segment from statement 167 to 194. The idea is to calculate

[(G {even} -1 P even}]t =t -t

»o, -0dd (computed) m,x, ‘odd

and then
= Tot’ st (¢ 70 1

The exponent, in floating point notation, of ¢ is, approximately, the
number of significant figures within wh1ch t and t' agree. Unfortunately,
because 188 and 192 are not coded correctly, the values of ¢ printed

at statement 193 are not useful. The elements of t are random numbers
created by the IMSL subroutine GGNOR.

From 196 to the end of the main loop the inverted normal blocks are
obtained by "de-pivoting":

- e - P e -1 =
Gmta, {053"} = P (Gm,a, {oégn} )y e (8.2)

and the variance of the error per degree is totalized in array RMS as
follows

_ GM?2 ,a \2n 2 09 1if m=0
RMS(n) = RMS(n) + < (T) O € mnm {2 otherwise

(o2 €nmnm =0 Enm ) so, at the end of the main loop,RMS(n) = Sl (a)"n 2
where o° ep is tﬂe n degree variance of the errors, and the rest is

the sca]1ng factor squared (expressions (2.15,a-b)}). From statement 219
to the end the error in the undulation up to degree n and this error
plus the truncation error above n are both calculated and stored in
arrays PPB and PPTR, respectively. Array PERC receives the formal percen-
tage error per degree (expression (3.2) multiplied by 100). While "debug-
ging" the program it was found useful to monitor the values of some of

the coefficients' accuracies as they were being obtained. This feature
was left 1n the program, where, for the reason given in paragraph 3.4,

all the o’eppnm fOr n < 40 are still printed out (statement 210).

If the 1nversTon of AE or of AO fails. subroutine DSINV returns an explanatory
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code in IER1 and IER2. which should be different from 0 and is also printed
out. A failure to invert is most likely due to a set-up error; perhaps

to an improperly dimensioned array; to a loader that does not preset all
undefined values to 0 before execution; or to improperly punched cards.
An exampie of all the messages printed during a normal run can be seen

in paragraph B.4.

The program prints out all results in unit IU (a piotter, for instance)
degree by degree (statement 238) in blocks of fifty lines, and at the
end prints a summary in increments of 10 degrees. The results are also
punched out (statements 219 and 220).

(b) Reduced Version

This version of the main program does not computethe normals, but
reads them from unit 10 (disk or tape), where they have been stored during
aprevious run of the full version. It also reads the original mission
parameters, with which the normals were created, as the first record in
file 10 (stat. 22). Some of those parameters can be changed in value
by re-scaling the normals (paragraph 2.13). The new parameters' values

can be declared by inserting statements between lines 22 and 25 in the listing.

This version does not call subroutine ONEREV, and reads unit 10 from
subroutine RED. Subroutine WRIT is not used. A1l the other subroutines
called in the full version are also used here. The fact that there is
no AQ matrix block when M = NMAX is taken into account (statements
94 and 98). Re-scaling according to (2.78) happens between 99
and 104. If no change in parameters is desired, FNSR is 1 . Expression
(2.84) for least squares collocation requires knowledge of the singular
values and eigenvectors of the normal matrix, instead of the inverse.

Lack of time and of familiarity with the decomposition subroutines available
resulted in inversion being chosen for both least squares adjustment and
for collocation. The fastest way to study the effect of parameter value
changes on the results with collocation is, therefore, to run this reduced
version with the new parameters. With NMAX = 331, this requires some

15 minutes. As no PIVE or PIVO arrays have been computed so far, this

is done now in statements 122-125, and then pivoting is applied. From

there on things are done much as in the full version, except that no test
for numerical stability of the inversion is done in addition to that of
DSINV. Results are printed and punched as in the full version.

B.2 Subroutine ONEREV

This subroutine computes the coefficients aBm aeeded to fin

elements of the normal matrix according to expression (2.51). The
are defined by expression (2.13)

agm . ;‘gm [(n+1) cosp-g- sin-‘é’-+ P sinp%— cos%’-]

as proportional to the Fourier coefficients th of the extended Legendre
functions L[pp(®') . The values of (n+1) cosp % sin% and of p sinp >
cos % are passed on to the subroutine from the main program in arrays SPET
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and CPS respectwvely The [ (®")  are sampled at equal intervals

A" = + (N ds the h1ghest degr e in the band, s the h1ghest fre-
quency in any Cpm is either h TecosNo' or hNQMsinNo'), and

then analysed with subroutine FFCSIN, which implements a mixed-radix Fast
Fourier Transform (FFT) algorithm. FFCSIN belongs to the International
Mathematical and Stat1st1ca1 Libraries (IMSL) Inc.'s double precision
library. It returns 2{(N+1)Rp" 1nst?aq of hB™ , but this is taken into
account in the main program. The [pp'® are ca]culated taking advantage
of the re1at1onsh1ps (2.2,ad), so only the values in the interval

0<¢< 1r are abso1ute1y necessary. These values are the same as those
of the corresponding Pp which are obtained with subroutine LEGFDN. .
There are (N+1)/2 points 1j where the P, have to be calculated in 0 <o,
so the space required by GPNMS is (N - MMIN + 2) x ((N + 1/2).

Here MMIN is the lowest order to be studied (a ‘eature of the main program
js that it allows the study of coefficients in the band MMIN < m< N ;

in the case of the results of section 3, MMIN = 0). The successive values
of the Ppm are put first in array GPNMS. Then all values corresponding
to the same P,y are moved to REV, where [pm is determined from (2.2,a-d),
so the dimension of REV 13 2(N+1). Then FFCSIN replaces the values of

Chm with those of the hp , also in REV, and the latter are moved on

to GPNMS , where they replace the original Ppm . IWK is an auxiliary

array needed by FFCSIN (see IMSL Handbook). Al aBm (multiplied by
2(N+1)) are returned to the main program. If the loader used does not
preset all undefined registers to zero, a DO loop should be put at the
beginning. between statements 5 and 6, setting to zero all arrays with
dimensions different from 1 . Alternatively, depending on the
compiler, a DATA statement to the same effect could be used.

e e

If an even function is added to an odd function, the Fourier coefficients j
of the sum are those of the even function in the cosine terms, and those
of the odd function in the sine terms. This simple fact is exploited
to reduce calculations by half, taking advantage of the even or odd nature
of the Lpm with respect to &'

The al™ with p=0 are handled separately from the rest, and are
returned to the main program in array GMN (statement 78). Besides FFCSIN
and LEGFDN, no other subroutines are called.

B.3 Subroutines LEGFDN, MODEL, and NVAR

Subroutine LEGFDN can calculate both the values of all normalized
Legendre function, at colatitude THETA, for the same order m =M , up
to degree n = NMAX , and also their derivatives. The functions are returned
in array RLEG, the derivatives in DLEG; after exit,RLMN contains a redundant
set of all sectorials up to degree n =m . All arrays, except DRTS
and DIRT should have the dimension NMAX1 (statement 5). DRTS and DIRT
should have twice that size. IR is a register that should be set to zero
before the first call to this subroutine, in the main program. IFLAG
tells the subroutine whether only the Legendre functions or these and
their derivatives are required (only the P,y were needed for the error
analysis, 50 IFLAG was set to 1). The P, and their derivatives are
calculated using recursive formulas given "M Colombo ((1981), paragraphs
(1.10) and (4.4)).

(1)(N-+1)/2 must be integer, so N = NMAX must be an odd number.
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Subroutine MODEL sets the values of the first NMOD components of arrays
DVAR adn DVER to the values of the degree variances of the errors in the i
potential coefficients of the reference model with respect to which the i
residual line of sight velocities are determined. The values in the listing ‘
corespond to the first 30 degrees in a model obtained by R. H. Rapp at
0SU from a global data set of 1°x1° mean anomalies by numerical quadratures.
This model is, in fact, complete up to degree and order 180, though only
the accuracies of the first 30 degrees are used here.

Subroutine NVAR initializes array DVAR so that its elements are the
same as the degree variances for the gravity anomaly implied by R. Rapp's
coefficients mentioned above, up to n = 100 . Above n = 100 , the variances
are those obtained from a two-term model for the gravity anomaly spectrum,
also the work of R. Rapp (1979b). The main program calls NVAR first and
MODEL afterwards, so the first NMOD degree variances are, finally, those
in MODEL (error variances), which correspond to dimensionless potential
coefficients. The remainder comes from NVAR, so they must be converted
to dimensionless potential from gravity anomaly variances, a step that
occurs in statements 80 and 81 of the main program. In NVAR, statements
120 and 122 add all potential degree variances between n = NMAX and n
= 2000 , and return this sum in POWNMX through COMMON/P/ to the main
program.

The same caution regarding the initialization of undeclared arrays
and variables to zero that was made for the main program and for ONEREV
apply to LEGFON and to MODEL (array DVAR) as well.

B.4 Sample Output

After the listings of the various routines described previously,
the reader will find a sample of the printed output created by either
version of the main program (they are the same). This listing should
help whoever wants to use these programs to check that his own punched
version works properly. The program should also punch out some cards
with the results (statements 238 and 239). Because of a minor error in
the program, now corrected, the standard deviation of the data is listed
as 10-¢ m s~!, instead of as /Z x 10~% m s-!, which is the actual value
corresponding to the results printed in the sample. The parameters used,
witn the exception of o , are as listed. To enter them into the main
program, see comments at the beginning of either version.

The first page of the output contains a listing of the mission parameter
values chosen. The "TIME BEFORE M " statements give the time in seconds
at the beginning of a new pass through the main loop, and they are printed
just before the time check in statement 95. the "ACCURACY OF INVERSION"
lines should indicate the stability of the inversion of the blocks of
order M , but they are useless because of the coding error megtioned
in paragraph B.1. The other numbers are scaled variances Gy (%—)2“
o’enm m Of the coefficients up to dearee and order 40 (a=0) . If the
numerQCa1 inversion of either block of order M fails the stability test
in subroutine DSINV, a line is printed saying "AT ORDER m [ER1 = x
IER2 = y", where x and y are two integers whose value should be interpreted
according to instructions in the Handbook of the SSP library. At the end
of the run, the various accuracies are listed in unit IU, first degree
by degree and then, in a final summary page, every 10 degrees.
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Appendix C : Detajled Listings Degree by Degree

This Appendix contains the full listing of the formal accuracies of
the potential coefficients from the error analysis of the SST mission
using (a) least squares adjustment theory, and (b) least squares collocation
theory. The rms of the total undulation error (last column) for least
squares collocation should be corrected as indicated in paragraph 3.1.

Notice the fluctuations in percentage error in the neighborhoods of
n=13 and n = 273,
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